End-to-end control of autonomous vehicles based on deep learning with visual attention

Zhenze Liu, Kuilin Wang, Jinliang Yu, Jingquan He
{"title":"End-to-end control of autonomous vehicles based on deep learning with visual attention","authors":"Zhenze Liu, Kuilin Wang, Jinliang Yu, Jingquan He","doi":"10.1109/CVCI51460.2020.9338558","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an end-to-end controller for self-driving vehicles based on visual attention. Attention strategy is used to weight the high-dimensional feature information extracted by convolutional neural networks (CNNs), and then the vehicle's velocity and steering wheel angle are predicted by different recurrent neural networks (RNNs). The end-to-end controller is trained on Comma.ai dataset and can effectively reduce the mean absolute error (MAE). The result shows that compared with other models, the end-to-end control model based on visual attention can achieve better control effects of vehicle's speed and steering wheel angle.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an end-to-end controller for self-driving vehicles based on visual attention. Attention strategy is used to weight the high-dimensional feature information extracted by convolutional neural networks (CNNs), and then the vehicle's velocity and steering wheel angle are predicted by different recurrent neural networks (RNNs). The end-to-end controller is trained on Comma.ai dataset and can effectively reduce the mean absolute error (MAE). The result shows that compared with other models, the end-to-end control model based on visual attention can achieve better control effects of vehicle's speed and steering wheel angle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉注意深度学习的自动驾驶车辆端到端控制
在本文中,我们提出了一种基于视觉注意的自动驾驶车辆端到端控制器。采用注意策略对卷积神经网络(cnn)提取的高维特征信息进行加权,然后利用不同的递归神经网络(rnn)预测车辆的速度和方向盘角度。端到端控制器在逗号上进行训练。并且可以有效地降低平均绝对误差(MAE)。结果表明,与其他模型相比,基于视觉注意的端到端控制模型可以获得更好的车辆速度和方向盘角度控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation Collision-avoidance steering control for autonomous vehicles using fast non-singular terminal sliding mode Energy management strategy based on velocity prediction for parallel plug-in hybrid electric bus Constrained Containment Control of Agents Network with Switching Topologies Multi-parameter driver intention recognition based on neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1