M. Chowdhury, Jeff F. Young, G. Sawatzky, A. Nojeh
{"title":"Broadband Infrared Hyperspectroscopy with High Spatial Resolution for the Study of Nanoscale Thermal Emitters in Vacuum","authors":"M. Chowdhury, Jeff F. Young, G. Sawatzky, A. Nojeh","doi":"10.1109/IVNC57695.2023.10188978","DOIUrl":null,"url":null,"abstract":"We have developed a thermal radiation (blackbody emission) hyperspectroscopy apparatus with a spectral range of ~ 1–7 µm and a spatial resolution of ~10 µm, with the sample held in an ultra-high vacuum chamber. This system enables the detailed analysis of thermal photon emission from nanomaterials/structures and temperature mapping up to thermionic electron emission temperatures under high thermal gradients and with high spectral fidelity. It is thus a useful characterization tool for studying the role of low-dimensional physics in thermal transport and emission and related phenomena such as heat localization in nanotubes.","PeriodicalId":346266,"journal":{"name":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","volume":"2390 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC57695.2023.10188978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed a thermal radiation (blackbody emission) hyperspectroscopy apparatus with a spectral range of ~ 1–7 µm and a spatial resolution of ~10 µm, with the sample held in an ultra-high vacuum chamber. This system enables the detailed analysis of thermal photon emission from nanomaterials/structures and temperature mapping up to thermionic electron emission temperatures under high thermal gradients and with high spectral fidelity. It is thus a useful characterization tool for studying the role of low-dimensional physics in thermal transport and emission and related phenomena such as heat localization in nanotubes.