Cooperative Coevolution of Automatically Defined Functions with Gene Expression Programming

Alejandro Sosa-Ascencio, Manuel Valenzuela-Rendón, H. Terashima-Marín
{"title":"Cooperative Coevolution of Automatically Defined Functions with Gene Expression Programming","authors":"Alejandro Sosa-Ascencio, Manuel Valenzuela-Rendón, H. Terashima-Marín","doi":"10.1109/MICAI.2012.15","DOIUrl":null,"url":null,"abstract":"The decomposition of problems into smaller elements is a widespread approach. In this paper we consider two approaches that are based over the principle to segmentation to problems for the resolution of resultant sub-components. On one hand, we have Automatically Defined Functions (ADFs), which originally emerged as a refinement of genetic programming for reuse code and modulirize programs into smaller components, and on the other hand, we incorporated co evolution to the implementation of ADFs, we present a cooperative co evolutionary-based approach to the problem of developing ADFs, we implemented a module of Gene Expression Programming (GEP) for the virtual gene Genetic Algorithm (vgGA) framework, and tested the co evolution of ADFs in three symbolic regression problems, comparing it with a conventional genetic algorithm. Our results show that on a simple function a conventional genetic algorithm performs better than our co evolutionary approach, but on a more complex functions the conventional genetic algorithm is outperformed by our co evolutionary approach. Also, we present an algorithm to implement GEP in a minimally invasive way in almost any genetic algorithm implementation.","PeriodicalId":348369,"journal":{"name":"2012 11th Mexican International Conference on Artificial Intelligence","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The decomposition of problems into smaller elements is a widespread approach. In this paper we consider two approaches that are based over the principle to segmentation to problems for the resolution of resultant sub-components. On one hand, we have Automatically Defined Functions (ADFs), which originally emerged as a refinement of genetic programming for reuse code and modulirize programs into smaller components, and on the other hand, we incorporated co evolution to the implementation of ADFs, we present a cooperative co evolutionary-based approach to the problem of developing ADFs, we implemented a module of Gene Expression Programming (GEP) for the virtual gene Genetic Algorithm (vgGA) framework, and tested the co evolution of ADFs in three symbolic regression problems, comparing it with a conventional genetic algorithm. Our results show that on a simple function a conventional genetic algorithm performs better than our co evolutionary approach, but on a more complex functions the conventional genetic algorithm is outperformed by our co evolutionary approach. Also, we present an algorithm to implement GEP in a minimally invasive way in almost any genetic algorithm implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基因表达式编程的自动定义函数协同进化
将问题分解成更小的元素是一种广泛使用的方法。在本文中,我们考虑了两种基于分割原则的方法来解决合成子分量的问题。一方面,我们有自动定义函数(adf),它最初是作为遗传编程的改进而出现的,用于重用代码并将程序模块化为更小的组件;另一方面,我们将协同进化纳入到adf的实现中,我们提出了一种基于协作协同进化的方法来开发adf,我们实现了一个用于虚拟基因遗传算法(vgGA)框架的基因表达编程(GEP)模块。并在三个符号回归问题中测试了adf的共同进化,并将其与传统遗传算法进行了比较。我们的研究结果表明,在一个简单的函数上,传统的遗传算法比我们的共同进化方法表现得更好,但在一个更复杂的函数上,传统的遗传算法比我们的共同进化方法表现得更好。此外,我们提出了一种算法,以一种微创的方式在几乎任何遗传算法的实现中实现GEP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conflict Resolution in Multiagent Systems: Balancing Optimality and Learning Speed Improvement on Automatic Speech Recognition Using Micro-genetic Algorithm A Novel Speed Control for DC Motors: Sliding Mode Control, Fuzzy Inference System, Neural Networks and Genetic Algorithms Middleware for Information Exchange in Heterogeneous Social Network Intrusion Detection Using Fuzzy Stochastic Local Search Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1