A parallel manipulator for mobile manipulating UAVs

T. Danko, Kenneth Chaney, P. Oh
{"title":"A parallel manipulator for mobile manipulating UAVs","authors":"T. Danko, Kenneth Chaney, P. Oh","doi":"10.1109/TePRA.2015.7219682","DOIUrl":null,"url":null,"abstract":"Manipulating objects using arms mounted to unmanned aerial vehicles (UAVs) is attractive because UAVs may access many locations that are otherwise inaccessible to traditional mobile manipulation platforms such as ground vehicles. Most previous efforts seeking to coordinate the combined manipulator-UAV system have focused on using a manipulator to extend the UAV's reach and assume that both the UAV and manipulator can reliably reach commanded goal poses. This work accepts the reality that state of the art UAV positioning precision is not of a high enough quality to reliably perform simple tasks such as grasping objects. A 6 degree of freedom parallel manipulator is used to robustly maintain precise end-effector positions despite host UAV perturbations. A description of a unique parallel manipulator that allows for very little moving mass, and is easily stowed below a quadrotor UAV is presented along with flight test results and an analytical comparison to a serial manipulator.","PeriodicalId":325788,"journal":{"name":"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TePRA.2015.7219682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Manipulating objects using arms mounted to unmanned aerial vehicles (UAVs) is attractive because UAVs may access many locations that are otherwise inaccessible to traditional mobile manipulation platforms such as ground vehicles. Most previous efforts seeking to coordinate the combined manipulator-UAV system have focused on using a manipulator to extend the UAV's reach and assume that both the UAV and manipulator can reliably reach commanded goal poses. This work accepts the reality that state of the art UAV positioning precision is not of a high enough quality to reliably perform simple tasks such as grasping objects. A 6 degree of freedom parallel manipulator is used to robustly maintain precise end-effector positions despite host UAV perturbations. A description of a unique parallel manipulator that allows for very little moving mass, and is easily stowed below a quadrotor UAV is presented along with flight test results and an analytical comparison to a serial manipulator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于移动操纵无人机的并联操纵器
使用安装在无人机上的武器操纵物体是有吸引力的,因为无人机可以进入许多传统移动操作平台(如地面车辆)无法进入的位置。大多数先前寻求协调联合机械臂-无人机系统的努力都集中在使用机械臂来扩展无人机的范围,并假设无人机和机械臂都能可靠地达到命令的目标姿态。这项工作接受了这样一个现实,即目前最先进的无人机定位精度不够高,无法可靠地执行简单的任务,如抓取物体。采用6自由度并联机械臂,在主机无人机摄动的情况下鲁棒地保持末端执行器的精确位置。一个独特的并联机械臂的描述,允许很少的移动质量,并且很容易存放在四旋翼无人机下面,连同飞行测试结果和分析比较,以一个串行机械臂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transparent integration of a real-time collision safety system to a motor control chain of a service robot Enhanced performances for cable-driven flexible robotic systems with asymmetric backlash profile Autonomous convoy driving by night: The vehicle tracking system Service robots: An industrial perspective An iterative clustering algorithm for classification of object motion direction using infrared sensor array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1