Person/vehicle classification based on deep belief networks

Ning Sun, G. Han, K. Du, Jixin Liu, Xiaofei Li
{"title":"Person/vehicle classification based on deep belief networks","authors":"Ning Sun, G. Han, K. Du, Jixin Liu, Xiaofei Li","doi":"10.1109/ICNC.2014.6975819","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the deep learning model for object classification. Robust classification networks were trained based on Deep Belief Networks (DBN) combined with several object representations included image pixel value, feature histogram by Histogram of Oriented Gradients (HOG) operator and eigen-features to distinguish four categories: pedestrian, biker, vehicle and others in the real scene. In addition, an image dataset called NUPTERC, in which the sample images collected from real surveillance video and Internet, was built to test the proposed methods. Experiments based on NUPTERC dataset demonstrated that the proposed deep learning architecture could achieve superior person vehicle classification performance under illumination changes, large pose variations and different resolution.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we investigated the deep learning model for object classification. Robust classification networks were trained based on Deep Belief Networks (DBN) combined with several object representations included image pixel value, feature histogram by Histogram of Oriented Gradients (HOG) operator and eigen-features to distinguish four categories: pedestrian, biker, vehicle and others in the real scene. In addition, an image dataset called NUPTERC, in which the sample images collected from real surveillance video and Internet, was built to test the proposed methods. Experiments based on NUPTERC dataset demonstrated that the proposed deep learning architecture could achieve superior person vehicle classification performance under illumination changes, large pose variations and different resolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度信念网络的人/车分类
本文研究了用于对象分类的深度学习模型。基于深度信念网络(DBN),结合图像像素值、HOG算子特征直方图和特征特征等多种目标表示,训练鲁棒分类网络,区分真实场景中的行人、自行车、车辆和其他四类。此外,建立了一个名为NUPTERC的图像数据集,其中收集了来自真实监控视频和互联网的样本图像,以测试所提出的方法。基于NUPTERC数据集的实验表明,所提出的深度学习架构在光照变化、大姿态变化和不同分辨率下都能取得较好的人车分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph based K-nearest neighbor minutiae clustering for fingerprint recognition Applications of artificial intelligence technologies in credit scoring: A survey of literature Construction of linear dynamic gene regulatory network based on feedforward neural network A new dynamic clustering method based on nuclear field A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1