A multi-class classification with a probabilistic localized decoder

Takashi Takenouchi, Shin Ishii
{"title":"A multi-class classification with a probabilistic localized decoder","authors":"Takashi Takenouchi, Shin Ishii","doi":"10.1109/ISSPIT.2007.4458004","DOIUrl":null,"url":null,"abstract":"Based on the framework of error-correcting output coding (ECOC), we formerly proposed a multi-class classification method in which mis-classification of each binary classifier is regarded as a bit inversion error based on a probabilistic model of the noisy channel. In this article, we propose a modification of the method, based on localized likelihood, to deal with the discrepancy of metric between assumed by binary classifiers and underlying the dataset. Experiments using a synthetic dataset are performed, and we observe the improvement by the localized method.","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2007.4458004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the framework of error-correcting output coding (ECOC), we formerly proposed a multi-class classification method in which mis-classification of each binary classifier is regarded as a bit inversion error based on a probabilistic model of the noisy channel. In this article, we propose a modification of the method, based on localized likelihood, to deal with the discrepancy of metric between assumed by binary classifiers and underlying the dataset. Experiments using a synthetic dataset are performed, and we observe the improvement by the localized method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率局部解码器的多类分类
基于纠错输出编码(ECOC)的框架,我们提出了一种基于噪声信道概率模型的多类分类方法,该方法将每个二值分类器的误分类视为位反转错误。在本文中,我们提出了一种基于局部似然的改进方法,以处理二元分类器假设的度量与底层数据集之间的差异。在一个合成数据集上进行了实验,我们观察到了局部化方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distribution of a Stochastic Control Algorithm Applied to Gas Storage Valuation Efficient Synthesis of Arbitrary Viewpoint Images Using 3-D Geometric Model and Mesh-Based Specular Reflection Tracing Relative Iris Codes Towards Evaluation of Phonics Method for Teaching of Reading Using Artificial Neural Networks (A Cognitive Modeling Approach) A concept of mathematical methods for the optimization of the post-processing of nuclear resonance spectra of the human skeletal musculature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1