CMOS implementation of neural networks for speech recognition

I. Jou, Ron-Yi Liu, Chung-Yu Wu
{"title":"CMOS implementation of neural networks for speech recognition","authors":"I. Jou, Ron-Yi Liu, Chung-Yu Wu","doi":"10.1109/APCCAS.1994.514603","DOIUrl":null,"url":null,"abstract":"In this paper, a Spatiotemporal Probabilistic Neural Network (SPNN) is proposed for spatiotemporal pattern recognition. This new model is developed by applying the concept of Gaussian density function to the network structure of the SPR (Spatiotemporal Pattern Recognition). The main advantages of this new model include faster training and recalling process for patterns, and the overall architecture is also simple, modular, regular, locally connected for VLSI implementation. The CMOS current-mode IC technology is used to implement the SPNN to achieve the objective of minimum classification error in a more direct manner. In this design, neural computation is performed in analog circuits while template information is stored in digital circuits. One set of independent speaker isolated (Mandarin digit) speech database is used as an example to demonstrate the superiority of the neural networks for spatiotemporal pattern recognition.","PeriodicalId":231368,"journal":{"name":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.1994.514603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a Spatiotemporal Probabilistic Neural Network (SPNN) is proposed for spatiotemporal pattern recognition. This new model is developed by applying the concept of Gaussian density function to the network structure of the SPR (Spatiotemporal Pattern Recognition). The main advantages of this new model include faster training and recalling process for patterns, and the overall architecture is also simple, modular, regular, locally connected for VLSI implementation. The CMOS current-mode IC technology is used to implement the SPNN to achieve the objective of minimum classification error in a more direct manner. In this design, neural computation is performed in analog circuits while template information is stored in digital circuits. One set of independent speaker isolated (Mandarin digit) speech database is used as an example to demonstrate the superiority of the neural networks for spatiotemporal pattern recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于语音识别的神经网络的CMOS实现
本文提出了一种用于时空模式识别的时空概率神经网络(SPNN)。该模型将高斯密度函数的概念应用于SPR(时空模式识别)的网络结构中。这种新模型的主要优点包括更快的模式训练和召回过程,并且整体架构也简单,模块化,规则,适合VLSI实现的本地连接。采用CMOS电流模集成电路技术实现SPNN,以更直接的方式实现分类误差最小的目标。在本设计中,神经计算在模拟电路中进行,模板信息存储在数字电路中。以一组独立说话人隔离(汉语数字)语音数据库为例,验证了神经网络在时空模式识别中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Area-time optimal digital BiCMOS carry look-ahead adder Hierarchical circuit optimization for analog LSIs using device model refining Decomposition-based 2-D variable digital filter design Artificial neural networks-learning and generalization Nonlinear gradient-based edge detection algorithms in the telesign system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1