Neural-Network-Based Adaptive Fault-Tolerant Control for Nonlinear Systems: A Fully Actuated System Approach

Yonghao Ma, Kecheng Zhang, B. Jiang, S. Simani, Wanglei Cheng
{"title":"Neural-Network-Based Adaptive Fault-Tolerant Control for Nonlinear Systems: A Fully Actuated System Approach","authors":"Yonghao Ma, Kecheng Zhang, B. Jiang, S. Simani, Wanglei Cheng","doi":"10.1109/ISAS59543.2023.10164574","DOIUrl":null,"url":null,"abstract":"The tracking issue is studied for nonlinear uncertain fully actuated systems in the presence of the actuator’s potential loss of effectiveness fault and bias fault. In contrast to the existing results, this paper takes uncertainties, including totally unknown system dynamics and actuator faults, into consideration. Neural networks are utilized to approximate the unknown dynamics. The adaptive technique is used to update the networks’ weight vector and estimate the unknown bounds of the actuator efficiency factor and bias fault in order to avoid the detrimental effect brought on by uncertainties. Then, a fault-tolerant control method is given to ensure all system’s signals are bound. Finally, a practical example is considered to demonstrate the validity of the main results.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The tracking issue is studied for nonlinear uncertain fully actuated systems in the presence of the actuator’s potential loss of effectiveness fault and bias fault. In contrast to the existing results, this paper takes uncertainties, including totally unknown system dynamics and actuator faults, into consideration. Neural networks are utilized to approximate the unknown dynamics. The adaptive technique is used to update the networks’ weight vector and estimate the unknown bounds of the actuator efficiency factor and bias fault in order to avoid the detrimental effect brought on by uncertainties. Then, a fault-tolerant control method is given to ensure all system’s signals are bound. Finally, a practical example is considered to demonstrate the validity of the main results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的非线性系统自适应容错控制:一种全驱动系统方法
研究了非线性不确定全作动系统中存在作动器潜在失效故障和偏置故障时的跟踪问题。与已有结果相比,本文考虑了不确定性,包括完全未知的系统动力学和执行器故障。利用神经网络对未知动力学进行近似。采用自适应技术更新网络权向量,估计执行器效率因子和偏置故障的未知界,以避免不确定性带来的不利影响。然后,给出了一种容错控制方法,以保证系统的所有信号都是绑定的。最后,通过一个实例验证了主要结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new type of video text automatic recognition method and its application in film and television works H∞ state feedback control for fuzzy singular Markovian jump systems with constant time delays and impulsive perturbations MMSTP: Multi-modal Spatiotemporal Feature Fusion Network for Precipitation Prediction Digital twin based bearing fault simulation modeling strategy and display dynamics End-to-End Model-Based Gait Recognition with Matching Module Based on Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1