{"title":"Indoor space subdivision for indoor navigation","authors":"M. Kruminaite, S. Zlatanova","doi":"10.1145/2676528.2676529","DOIUrl":null,"url":null,"abstract":"There are a number of great attempts to develop an indoor navigation that provide the most optimal path and guidance. Finding a way in large buildings can be a challenging task. In order to represent the real situation to a maximum extent, a representation of the whole room as one single indivisible object is not enough as such representation is very abstract and this could make the navigation difficult and may result into inefficient route planning. In order to provide a smooth navigation path, the presence of humans within the indoor environment and the natural movement of individuals should be taken into consideration. In this paper a two-step indoor space subdivision for indoor navigation is described. Firstly, the indoor space is subdivided into navigable and non-navigable areas considering human perceptions of the environment and human behaviour. Secondly, the navigable space is subdivided applying a constrained Delaunay triangulation. Finally, the guidelines for generation of the navigation network and verification of the proposed model are presented.","PeriodicalId":164337,"journal":{"name":"International Symposium on Algorithms","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676528.2676529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62
Abstract
There are a number of great attempts to develop an indoor navigation that provide the most optimal path and guidance. Finding a way in large buildings can be a challenging task. In order to represent the real situation to a maximum extent, a representation of the whole room as one single indivisible object is not enough as such representation is very abstract and this could make the navigation difficult and may result into inefficient route planning. In order to provide a smooth navigation path, the presence of humans within the indoor environment and the natural movement of individuals should be taken into consideration. In this paper a two-step indoor space subdivision for indoor navigation is described. Firstly, the indoor space is subdivided into navigable and non-navigable areas considering human perceptions of the environment and human behaviour. Secondly, the navigable space is subdivided applying a constrained Delaunay triangulation. Finally, the guidelines for generation of the navigation network and verification of the proposed model are presented.