{"title":"Queueing analysis for block fading Rayleigh channels in the low SNR regime","authors":"Yunquan Dong, Pingyi Fan","doi":"10.1109/WCSP.2013.6677046","DOIUrl":null,"url":null,"abstract":"Wireless fading channels suffer from the time varying channel gains besides the Additive White Gaussian Noise (AWGN). As a result, it is impossible for fading channels to support a constant rate data stream without the help of buffers. In this paper, we consider information transmission over an infinite buffer-aided block Rayleigh fading channel in the low signal-to-noise ratio (SNR) regime, and characterize the transmission capability of the channel in terms of stationary queue length distribution and packet delay rather than using data rate only. Taking advantage of the memoryless property of the service provided by the channel in each block, which follows the negative exponential distribution, the transmission process is formulated as a discrete time discrete state D/G/1 queueing problem. The obtained results provide a full characterization of block Rayleigh fading channels and can be extended to the finite buffer aided transmissions.","PeriodicalId":342639,"journal":{"name":"2013 International Conference on Wireless Communications and Signal Processing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wireless Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2013.6677046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Wireless fading channels suffer from the time varying channel gains besides the Additive White Gaussian Noise (AWGN). As a result, it is impossible for fading channels to support a constant rate data stream without the help of buffers. In this paper, we consider information transmission over an infinite buffer-aided block Rayleigh fading channel in the low signal-to-noise ratio (SNR) regime, and characterize the transmission capability of the channel in terms of stationary queue length distribution and packet delay rather than using data rate only. Taking advantage of the memoryless property of the service provided by the channel in each block, which follows the negative exponential distribution, the transmission process is formulated as a discrete time discrete state D/G/1 queueing problem. The obtained results provide a full characterization of block Rayleigh fading channels and can be extended to the finite buffer aided transmissions.