Monitoring soil moisture through assimilation of active microwave remote sensing observation into a hydrologic model

Qiang Liu, Yingshi Zhao
{"title":"Monitoring soil moisture through assimilation of active microwave remote sensing observation into a hydrologic model","authors":"Qiang Liu, Yingshi Zhao","doi":"10.1117/12.2204954","DOIUrl":null,"url":null,"abstract":"Soil moisture can be estimated from point measurements, hydrologic models, and remote sensing. Many researches indicated that the most promising approach for soil moisture is the integration of remote sensing surface soil moisture data and computational modeling. Although many researches were conducted using passive microwave remote sensing data in soil moisture assimilation with coarse spatial resolution, few researches were carried out using active microwave remote sensing observation. This research developed and tested an operational approach of assimilation for soil moisture prediction using active microwave remote sensing data ASAR (Advanced Synthetic Aperture Radar) in Heihe Watershed. The assimilation was based on ensemble Kalman filter (EnKF), a forward radiative transfer model and the Distributed Hydrology Soil Vegetation Model (DHSVM). The forward radiative transfer model, as a semi-empirical backscattering model, was used to eliminate the effect of surface roughness and vegetation cover on the backscatter coefficient. The impact of topography on soil water movement and the vertical and lateral exchange of soil water were considered. We conducted experiments to assimilate active microwave remote sensing data (ASAR) observation into a hydrologic model at two field sites, which had different underlying conditions. The soil moisture ground-truth data were collected through the field Time Domain Reflectometry (TDR) tools, and were used to assess the assimilation method. The temporal evolution of soil moisture measured at point-based monitoring locations were compared with EnKF based model predictions. The results indicated that the estimate of soil moisture was improved through assimilation with ASAR observation and the soil moisture based on data assimilation can be monitored in moderate spatial resolution.","PeriodicalId":340728,"journal":{"name":"China Symposium on Remote Sensing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Symposium on Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2204954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soil moisture can be estimated from point measurements, hydrologic models, and remote sensing. Many researches indicated that the most promising approach for soil moisture is the integration of remote sensing surface soil moisture data and computational modeling. Although many researches were conducted using passive microwave remote sensing data in soil moisture assimilation with coarse spatial resolution, few researches were carried out using active microwave remote sensing observation. This research developed and tested an operational approach of assimilation for soil moisture prediction using active microwave remote sensing data ASAR (Advanced Synthetic Aperture Radar) in Heihe Watershed. The assimilation was based on ensemble Kalman filter (EnKF), a forward radiative transfer model and the Distributed Hydrology Soil Vegetation Model (DHSVM). The forward radiative transfer model, as a semi-empirical backscattering model, was used to eliminate the effect of surface roughness and vegetation cover on the backscatter coefficient. The impact of topography on soil water movement and the vertical and lateral exchange of soil water were considered. We conducted experiments to assimilate active microwave remote sensing data (ASAR) observation into a hydrologic model at two field sites, which had different underlying conditions. The soil moisture ground-truth data were collected through the field Time Domain Reflectometry (TDR) tools, and were used to assess the assimilation method. The temporal evolution of soil moisture measured at point-based monitoring locations were compared with EnKF based model predictions. The results indicated that the estimate of soil moisture was improved through assimilation with ASAR observation and the soil moisture based on data assimilation can be monitored in moderate spatial resolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过将主动微波遥感观测数据同化到水文模型中监测土壤湿度
土壤水分可通过点测量、水文模型和遥感进行估算。许多研究表明,最有前途的土壤水分方法是将遥感地表土壤水分数据与计算模型相结合。虽然许多研究利用被动微波遥感数据进行粗空间分辨率的土壤水分同化,但利用主动微波遥感观测的研究却很少。本研究开发并测试了一种利用主动微波遥感数据 ASAR(先进合成孔径雷达)进行黑河流域土壤水分预测的同化操作方法。同化方法基于集合卡尔曼滤波器(EnKF)、前向辐射传递模型和分布式水文土壤植被模型(DHSVM)。前向辐射传递模型是一种半经验后向散射模型,用于消除地表粗糙度和植被覆盖对后向散射系数的影响。考虑了地形对土壤水运动的影响以及土壤水的垂直和横向交换。我们在两个基础条件不同的野外地点进行了将主动微波遥感数据(ASAR)观测结果同化到水文模型中的实验。土壤水分地面实况数据是通过野外时域反射仪(TDR)工具收集的,用于评估同化方法。在点式监测点测得的土壤水分的时间演变与基于 EnKF 的模型预测进行了比较。结果表明,通过与 ASAR 观测数据同化,土壤水分的估算得到了改善,基于数据同化的土壤水分可在中等空间分辨率下进行监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites On-orbit geometric calibration and validation of Optical-1 HR Effectiveness analysis of ACOS-Xco2 bias correction method with GEOS-Chem model results Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image Temporal and spatial analysis of global GOSAT XCO2 variations characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1