A learning-based approach for efficient visualization construction

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2022-03-01 DOI:10.1016/j.visinf.2022.01.001
Yongjian Sun , Jie Li , Siming Chen , Gennady Andrienko , Natalia Andrienko , Kang Zhang
{"title":"A learning-based approach for efficient visualization construction","authors":"Yongjian Sun ,&nbsp;Jie Li ,&nbsp;Siming Chen ,&nbsp;Gennady Andrienko ,&nbsp;Natalia Andrienko ,&nbsp;Kang Zhang","doi":"10.1016/j.visinf.2022.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an approach to underpin interactive visual exploration of large data volumes by training Learned Visualization Index (LVI). Knowing in advance the data, the aggregation functions that are used for visualization, the visual encoding, and available interactive operations for data selection, LVI allows to avoid time-consuming data retrieval and processing of raw data in response to user’s interactions. Instead, LVI directly predicts aggregates of interest for the user’s data selection. We demonstrate the efficiency of the proposed approach in application to two use cases of spatio-temporal data at different scales.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 1","pages":"Pages 14-25"},"PeriodicalIF":3.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000080/pdfft?md5=16523953bb5f7df328c6c78d0aaff5fa&pid=1-s2.0-S2468502X22000080-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000080","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

We propose an approach to underpin interactive visual exploration of large data volumes by training Learned Visualization Index (LVI). Knowing in advance the data, the aggregation functions that are used for visualization, the visual encoding, and available interactive operations for data selection, LVI allows to avoid time-consuming data retrieval and processing of raw data in response to user’s interactions. Instead, LVI directly predicts aggregates of interest for the user’s data selection. We demonstrate the efficiency of the proposed approach in application to two use cases of spatio-temporal data at different scales.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的高效可视化构建方法
我们提出了一种通过训练学习可视化索引(LVI)来支持大数据量的交互式可视化探索的方法。LVI预先知道数据、用于可视化的聚合函数、可视化编码和可用的数据选择交互操作,因此可以避免为响应用户交互而对原始数据进行耗时的数据检索和处理。相反,LVI直接预测用户数据选择的兴趣聚合。我们在两个不同尺度的时空数据用例中证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1