Fuzzy ARTMAP: an adaptive resonance architecture for incremental learning of analog maps

G. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, D. B. Rosen
{"title":"Fuzzy ARTMAP: an adaptive resonance architecture for incremental learning of analog maps","authors":"G. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, D. B. Rosen","doi":"10.1109/IJCNN.1992.227156","DOIUrl":null,"url":null,"abstract":"Fuzzy ARTMAP achieves a synthesis of fuzzy logic and adaptive resonance theory (ART) neural networks. Fuzzy ARTMAP realizes a new minimax learning rule that conjointly minimizes predictive error and maximizes code compression or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or hidden units, to meet accuracy criteria. Improved prediction is achieved by training the system several times using different orderings of the input set, and then voting. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Simulations illustrated fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithmic systems.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Fuzzy ARTMAP achieves a synthesis of fuzzy logic and adaptive resonance theory (ART) neural networks. Fuzzy ARTMAP realizes a new minimax learning rule that conjointly minimizes predictive error and maximizes code compression or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or hidden units, to meet accuracy criteria. Improved prediction is achieved by training the system several times using different orderings of the input set, and then voting. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Simulations illustrated fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithmic systems.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊ARTMAP:一种用于模拟图增量学习的自适应共振结构
模糊ARTMAP实现了模糊逻辑和自适应共振理论(ART)神经网络的综合。模糊ARTMAP实现了最小化预测误差和最大化代码压缩或泛化的一种新的极大极小学习规则。这是通过匹配跟踪过程实现的,该过程将ART警戒参数增加到纠正预测错误所需的最小量。因此,系统自动学习最小数量的识别类别或隐藏单元,以满足准确性标准。改进的预测是通过使用输入集的不同顺序对系统进行多次训练,然后进行投票来实现的。这种投票策略还可以用于为给定小的、有噪声的或不完整的训练集的竞争预测分配概率估计。与基准反向传播和遗传算法系统相比,仿真说明了模糊ARTMAP的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1