Probability density estimation for object recognition in unmanned aerial vehicle application

V. Kharchenko, A. Kukush, N. Kuzmenko, I. Ostroumov
{"title":"Probability density estimation for object recognition in unmanned aerial vehicle application","authors":"V. Kharchenko, A. Kukush, N. Kuzmenko, I. Ostroumov","doi":"10.1109/APUAVD.2017.8308818","DOIUrl":null,"url":null,"abstract":"The problem of object recognition in Unmanned Aerial Vehicle application is considered. Probabilistic Bayesian approach in object recognition is used. The accuracy of object recognition depends directly on the quality of prior data and accuracy of object parameters description. An approach for probability density estimation based of regression model is represented. Probability density functions are estimated by learning samples. The proposed approach is verified by laboratory experiment with video recording of object in rotatable platform.","PeriodicalId":163267,"journal":{"name":"2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APUAVD.2017.8308818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The problem of object recognition in Unmanned Aerial Vehicle application is considered. Probabilistic Bayesian approach in object recognition is used. The accuracy of object recognition depends directly on the quality of prior data and accuracy of object parameters description. An approach for probability density estimation based of regression model is represented. Probability density functions are estimated by learning samples. The proposed approach is verified by laboratory experiment with video recording of object in rotatable platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率密度估计在无人机目标识别中的应用
研究了无人机应用中的目标识别问题。在目标识别中采用概率贝叶斯方法。目标识别的准确性直接取决于先验数据的质量和目标参数描述的准确性。提出了一种基于回归模型的概率密度估计方法。通过学习样本估计概率密度函数。通过室内实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overclocking algorithms for SINS The transformation of linear dynamical object's equation to Brunovsky canonical form Digital temperature measuring device for use on unmanned aerial vehicles Analysis of informativity of anomalous geomagnetic field databases for aided UAV navigation A fault tree of unmanned aircraft systems for military applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1