Stress Identification in Online Social Networks

Ashok Kumar, T. Trueman, E. Cambria
{"title":"Stress Identification in Online Social Networks","authors":"Ashok Kumar, T. Trueman, E. Cambria","doi":"10.1109/ICDMW58026.2022.00063","DOIUrl":null,"url":null,"abstract":"Online social networks have become one of the primary ways of communication to individuals. It rapidly gen-erates a large volume of textual and non-textual data such as images, audio, and videos. In particular, textual data plays a vital role in detecting mental health-related problems such as stress, depression, anxiety, and emotional and behavioral disorders. In this paper, we identify the mental stress of online users in social networks using a transformers-based RoBERTa model and an autoregressive model, also called XLNet. We implement this model in both a constrained system and an unconstrained system. The constrained system maintains the gold standard datasets such as training, validation, and testing. On the other hand, the unconstrained system divides the given dataset into user-specific training, validation, and test sets. Our results indicate that the proposed transformers-based RoBERTa model achieves a better result in both constrained and unconstrained systems than the state-of-the-art models.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Online social networks have become one of the primary ways of communication to individuals. It rapidly gen-erates a large volume of textual and non-textual data such as images, audio, and videos. In particular, textual data plays a vital role in detecting mental health-related problems such as stress, depression, anxiety, and emotional and behavioral disorders. In this paper, we identify the mental stress of online users in social networks using a transformers-based RoBERTa model and an autoregressive model, also called XLNet. We implement this model in both a constrained system and an unconstrained system. The constrained system maintains the gold standard datasets such as training, validation, and testing. On the other hand, the unconstrained system divides the given dataset into user-specific training, validation, and test sets. Our results indicate that the proposed transformers-based RoBERTa model achieves a better result in both constrained and unconstrained systems than the state-of-the-art models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线社交网络中的压力识别
在线社交网络已经成为个人交流的主要方式之一。它可以快速生成大量的文本和非文本数据,如图像、音频和视频。特别是,文本数据在检测精神健康相关问题(如压力、抑郁、焦虑、情绪和行为障碍)方面起着至关重要的作用。在本文中,我们使用基于转换器的RoBERTa模型和自回归模型(也称为XLNet)来识别社交网络中在线用户的心理压力。我们在有约束系统和无约束系统中都实现了这个模型。约束系统维护黄金标准数据集,如训练、验证和测试。另一方面,无约束系统将给定的数据集划分为特定于用户的训练集、验证集和测试集。我们的结果表明,所提出的基于变压器的RoBERTa模型在有约束和无约束系统中都比最先进的模型取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1