{"title":"Dual-band differential outputs CMOS Low Noise Amplifier","authors":"Atsuhiro Hamasawa, H. Kanaya","doi":"10.1109/EPTC.2018.8654309","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a dual-band low noise amplifier (LNA) with a single input differential outputs of 5.2 GHz and 2.4GHz band with $0.18 \\mu \\mathrm{m}$ CMOS technology. In order to achieve the goal of expanding the availability of telecommunication system, this LNA is designed as a dual-band operation by using a band pass filter and a notch filter simultaneously [1]. Moreover, by introducing the CG (common gate)-CS (common source) topology [2], we can obtain the output phase differs by 0 and 180 degrees. This will reduce the connection loss to the mixer developed in the previous study [3]. In this paper, simulation results of gain, noise figure and output phase difference are shown, and a chip layout is shown. The proposed LNA has a gain of 16.5 dB and 11.1 dB at 2.4 GHz and 5.2 GHz, a noise figure of 3.1 dB and 3.7 dB, and the phase difference is less than 0.32 degrees.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2018.8654309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents the design of a dual-band low noise amplifier (LNA) with a single input differential outputs of 5.2 GHz and 2.4GHz band with $0.18 \mu \mathrm{m}$ CMOS technology. In order to achieve the goal of expanding the availability of telecommunication system, this LNA is designed as a dual-band operation by using a band pass filter and a notch filter simultaneously [1]. Moreover, by introducing the CG (common gate)-CS (common source) topology [2], we can obtain the output phase differs by 0 and 180 degrees. This will reduce the connection loss to the mixer developed in the previous study [3]. In this paper, simulation results of gain, noise figure and output phase difference are shown, and a chip layout is shown. The proposed LNA has a gain of 16.5 dB and 11.1 dB at 2.4 GHz and 5.2 GHz, a noise figure of 3.1 dB and 3.7 dB, and the phase difference is less than 0.32 degrees.