Atlas-based segmentation of brain MR images using least square support vector machines

K. Kasiri, K. Kazemi, M. Dehghani, M. Helfroush
{"title":"Atlas-based segmentation of brain MR images using least square support vector machines","authors":"K. Kasiri, K. Kazemi, M. Dehghani, M. Helfroush","doi":"10.1109/IPTA.2010.5586779","DOIUrl":null,"url":null,"abstract":"This study presents an automatic model based technique for brain tissue segmentation from cerebral magnetic resonance (MR) images. In this paper, support vector machine (SVM) based classifier, as a new and powerful kind of supervised machine learning with high generalization characteristics, is employed. Here, least-square SVM (LS-SVM) in conjunction with brain probabilistic atlas as a priori information is applied to obtain class probabilities for three tissues of cerebrospinal fluid (CSF), white matter (WM) and grey matter (GM). The entire process of brain segmentation is performed in an iterative procedure, so that the probabilistic maps of brain tissues will be updated at any iteration. The quantitative and qualitative results indicate excellent performance of the applied method.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This study presents an automatic model based technique for brain tissue segmentation from cerebral magnetic resonance (MR) images. In this paper, support vector machine (SVM) based classifier, as a new and powerful kind of supervised machine learning with high generalization characteristics, is employed. Here, least-square SVM (LS-SVM) in conjunction with brain probabilistic atlas as a priori information is applied to obtain class probabilities for three tissues of cerebrospinal fluid (CSF), white matter (WM) and grey matter (GM). The entire process of brain segmentation is performed in an iterative procedure, so that the probabilistic maps of brain tissues will be updated at any iteration. The quantitative and qualitative results indicate excellent performance of the applied method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最小二乘支持向量机的脑磁共振图像分割
提出了一种基于自动模型的脑磁共振图像脑组织分割技术。本文采用基于支持向量机(SVM)的分类器作为一种新的、强大的、具有高度泛化特性的监督机器学习方法。本文采用最小二乘支持向量机(LS-SVM)结合脑概率图谱作为先验信息,得到脑脊液(CSF)、白质(WM)和灰质(GM)三种组织的类概率。整个脑分割过程采用迭代方法进行,使得脑组织的概率图在每次迭代中都能得到更新。定量和定性结果均表明了该方法的优良性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1