Depressive Symptoms and Functional Impairments Extraction From Electronic Health Records

You-Chen Zhang, Chung-Hong Lee, Tyng-Yeu Liang, Wei-Che Chung, Kuei-Han Li, Cheng-Chieh Huang, Hong-Jie Dai, Chi-Shin Wu, C. Kuo, Chu-Hsien Su, Horng-Chang Yang
{"title":"Depressive Symptoms and Functional Impairments Extraction From Electronic Health Records","authors":"You-Chen Zhang, Chung-Hong Lee, Tyng-Yeu Liang, Wei-Che Chung, Kuei-Han Li, Cheng-Chieh Huang, Hong-Jie Dai, Chi-Shin Wu, C. Kuo, Chu-Hsien Su, Horng-Chang Yang","doi":"10.1109/ICMLC48188.2019.8949199","DOIUrl":null,"url":null,"abstract":"This study aims to extract symptom profiles and functional impairments of major depressive disorder from electronic health records (EHRs). A chart review was conducted by three annotators on 500 discharge notes randomly selected from a medical center in Taiwan to compile annotated corpora for nine depressive symptoms and four types of functional impairment. Named entity recognition techniques including the dictionary-based approach., a conditional random field model, and deep learning approaches were developed for the task of recognizing depressive symptoms and functional impairments from EHRs. The results show that the average micro-F-measures of the supervised learning approaches in extracting depressive symptoms is almost perfect (>0.90) but less accurate for the extraction of functional impairment.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study aims to extract symptom profiles and functional impairments of major depressive disorder from electronic health records (EHRs). A chart review was conducted by three annotators on 500 discharge notes randomly selected from a medical center in Taiwan to compile annotated corpora for nine depressive symptoms and four types of functional impairment. Named entity recognition techniques including the dictionary-based approach., a conditional random field model, and deep learning approaches were developed for the task of recognizing depressive symptoms and functional impairments from EHRs. The results show that the average micro-F-measures of the supervised learning approaches in extracting depressive symptoms is almost perfect (>0.90) but less accurate for the extraction of functional impairment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从电子健康记录中提取抑郁症状和功能障碍
本研究旨在从电子健康记录(EHRs)中提取重度抑郁症的症状特征和功能障碍。本研究由三名注释者对台湾某医疗中心随机抽取的500份出院病历进行图表审查,编制9种抑郁症状和4种功能障碍的注释语料库。命名实体识别技术包括基于字典的方法。、条件随机场模型和深度学习方法被开发用于从电子病历中识别抑郁症状和功能障碍的任务。结果表明,监督学习方法提取抑郁症状的平均微f值几乎是完美的(>0.90),但提取功能障碍的准确度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Empirical Study on the Classification of Chinese News Articles by Machine Learning and Deep Learning Techniques Posture Estimation Method Using Cushion Type Seat Pressure Sensor Advanced Convolutional Neural Network With Feedforward Inhibition Utilization of the Infrared Image Capturing Combustion State for Estimating the Steam Flow Aming to Stabilize Garbage Power Generation Domain Adaption for Facial Expression Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1