Solid-State Circuit Breaker Component Simulation

Matthew Hughes, N. Weise
{"title":"Solid-State Circuit Breaker Component Simulation","authors":"Matthew Hughes, N. Weise","doi":"10.1109/IECON48115.2021.9589422","DOIUrl":null,"url":null,"abstract":"The landscape of direct current (DC) solid-state circuit breakers (SSCBs) is growing and so too is the choice of primary components. There now exists a wide range of devices capable of withstanding voltage levels conducive to electrical transmission; though steady state efficiency of these devices remains a concern. Choosing primary components out of the growing selection pool can be cumbersome and prone to biased decision-making. The purpose of using a multifaceted mathematical approach to decision-making is to reduce these complications. The contribution of this paper will reduce biased decision-making when choosing primary components of SSCBs. This methodology consists of developing accurate and consistent simulation comparisons of steady-state efficiency, thermal performance, and cost of a variety of SSCB types, topologies, and solidstate device materials. The results contained within this paper demonstrate an achievable holistic approach to SSCB primary component choice.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The landscape of direct current (DC) solid-state circuit breakers (SSCBs) is growing and so too is the choice of primary components. There now exists a wide range of devices capable of withstanding voltage levels conducive to electrical transmission; though steady state efficiency of these devices remains a concern. Choosing primary components out of the growing selection pool can be cumbersome and prone to biased decision-making. The purpose of using a multifaceted mathematical approach to decision-making is to reduce these complications. The contribution of this paper will reduce biased decision-making when choosing primary components of SSCBs. This methodology consists of developing accurate and consistent simulation comparisons of steady-state efficiency, thermal performance, and cost of a variety of SSCB types, topologies, and solidstate device materials. The results contained within this paper demonstrate an achievable holistic approach to SSCB primary component choice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固态断路器元件仿真
直流(DC)固态断路器(sscb)的前景正在增长,主要部件的选择也是如此。现在有各种各样的设备能够承受有利于电力传输的电压水平;尽管这些器件的稳态效率仍然是一个问题。从不断增长的选择池中选择主要组件可能很麻烦,而且容易产生有偏见的决策。使用多方面的数学方法进行决策的目的是减少这些复杂性。本文的贡献将减少在选择sscb主要成分时的偏见决策。该方法包括对各种SSCB类型、拓扑结构和固态器件材料的稳态效率、热性能和成本进行准确和一致的模拟比较。本文中包含的结果展示了一种可实现的SSCB主要成分选择的整体方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Extended Phase Shift Modulation for DAB Converter with the Blocking Capacitor An Online Noninvasive Estimation Method of Electrolytic Capacitor for Boost Converters Control of Grid-tied Dual-PV LLC Converter using Adaptive Neuro Fuzzy Interface System (ANFIS) Space Vector Modulation Scheme for Three-Phase Single-Stage SEPIC-Based Grid-Connected Differential Inverter Dynamic Phasor-Based Modeling and Analysis of Dual-Loop Controlled DC-DC Converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1