UR3D-C: Linear dimensionality reduction for efficient 3D face recognition

Omar Ocegueda, G. Passalis, T. Theoharis, S. Shah, I. Kakadiaris
{"title":"UR3D-C: Linear dimensionality reduction for efficient 3D face recognition","authors":"Omar Ocegueda, G. Passalis, T. Theoharis, S. Shah, I. Kakadiaris","doi":"10.1109/IJCB.2011.6117521","DOIUrl":null,"url":null,"abstract":"We present a novel approach for computing a compact and highly discriminant biometric signature for 3D face recognition using linear dimensionality reduction techniques. Initially, a geometry-image representation is used to effectively resample the raw 3D data. Subsequently, a wavelet transform is applied and a biometric signature composed of 7,200 wavelet coefficients is extracted. Finally, we apply a second linear dimensionality reduction step to the wavelet coefficients using Linear Discriminant Analysis and compute a compact biometric signature. Although this biometric signature consists of just 57 coefficients, it is highly discriminant. Our approach, UR3D-C, is experimentally validated using four publicly available databases (FRGC v1, FRGC v2, Bosphorus and BU-3DFE). State-of-the-art performance is reported in all of the above databases.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We present a novel approach for computing a compact and highly discriminant biometric signature for 3D face recognition using linear dimensionality reduction techniques. Initially, a geometry-image representation is used to effectively resample the raw 3D data. Subsequently, a wavelet transform is applied and a biometric signature composed of 7,200 wavelet coefficients is extracted. Finally, we apply a second linear dimensionality reduction step to the wavelet coefficients using Linear Discriminant Analysis and compute a compact biometric signature. Although this biometric signature consists of just 57 coefficients, it is highly discriminant. Our approach, UR3D-C, is experimentally validated using four publicly available databases (FRGC v1, FRGC v2, Bosphorus and BU-3DFE). State-of-the-art performance is reported in all of the above databases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UR3D-C:用于高效3D人脸识别的线性降维
我们提出了一种新的方法来计算一个紧凑的和高度判别的生物特征签名用于三维人脸识别使用线性降维技术。首先,使用几何图像表示来有效地重新采样原始3D数据。然后,应用小波变换,提取由7200个小波系数组成的生物特征签名。最后,我们使用线性判别分析对小波系数进行第二次线性降维,并计算出紧凑的生物特征签名。尽管这种生物特征仅由57个系数组成,但它具有高度的区别性。我们的方法UR3D-C通过四个公开可用的数据库(FRGC v1, FRGC v2, Bosphorus和BU-3DFE)进行了实验验证。上述所有数据库都报告了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1