Omar Ocegueda, G. Passalis, T. Theoharis, S. Shah, I. Kakadiaris
{"title":"UR3D-C: Linear dimensionality reduction for efficient 3D face recognition","authors":"Omar Ocegueda, G. Passalis, T. Theoharis, S. Shah, I. Kakadiaris","doi":"10.1109/IJCB.2011.6117521","DOIUrl":null,"url":null,"abstract":"We present a novel approach for computing a compact and highly discriminant biometric signature for 3D face recognition using linear dimensionality reduction techniques. Initially, a geometry-image representation is used to effectively resample the raw 3D data. Subsequently, a wavelet transform is applied and a biometric signature composed of 7,200 wavelet coefficients is extracted. Finally, we apply a second linear dimensionality reduction step to the wavelet coefficients using Linear Discriminant Analysis and compute a compact biometric signature. Although this biometric signature consists of just 57 coefficients, it is highly discriminant. Our approach, UR3D-C, is experimentally validated using four publicly available databases (FRGC v1, FRGC v2, Bosphorus and BU-3DFE). State-of-the-art performance is reported in all of the above databases.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
We present a novel approach for computing a compact and highly discriminant biometric signature for 3D face recognition using linear dimensionality reduction techniques. Initially, a geometry-image representation is used to effectively resample the raw 3D data. Subsequently, a wavelet transform is applied and a biometric signature composed of 7,200 wavelet coefficients is extracted. Finally, we apply a second linear dimensionality reduction step to the wavelet coefficients using Linear Discriminant Analysis and compute a compact biometric signature. Although this biometric signature consists of just 57 coefficients, it is highly discriminant. Our approach, UR3D-C, is experimentally validated using four publicly available databases (FRGC v1, FRGC v2, Bosphorus and BU-3DFE). State-of-the-art performance is reported in all of the above databases.