Translation and Scale Invariance for Event-Based Object tracking

Jens Egholm Pedersen, Raghav Singhal, J. Conradt
{"title":"Translation and Scale Invariance for Event-Based Object tracking","authors":"Jens Egholm Pedersen, Raghav Singhal, J. Conradt","doi":"10.1145/3584954.3584996","DOIUrl":null,"url":null,"abstract":"Without temporal averaging, such as rate codes, it remains challenging to train spiking neural networks for temporal regression tasks. In this work, we present a novel method to accurately predict spatial coordinates from event data with a fully spiking convolutional neural network (SCNN) without temporal averaging. Our method performs on-par with artificial neural networks (ANN) of similar complexity. Additionally, we demonstrate faster convergence in half the time using translation- and scale-invariant receptive fields. To permit comparison with conventional frame-based ANNs, we base our results on a simulated event-based dataset with an unrealistic high density. Therefore, we hypothesize that our method significantly outperform ANNs in settings with lower event density, as seen in real-life event-based data. Our model is fully spiking and can be ported directly to neuromorphic hardware.","PeriodicalId":375527,"journal":{"name":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584954.3584996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Without temporal averaging, such as rate codes, it remains challenging to train spiking neural networks for temporal regression tasks. In this work, we present a novel method to accurately predict spatial coordinates from event data with a fully spiking convolutional neural network (SCNN) without temporal averaging. Our method performs on-par with artificial neural networks (ANN) of similar complexity. Additionally, we demonstrate faster convergence in half the time using translation- and scale-invariant receptive fields. To permit comparison with conventional frame-based ANNs, we base our results on a simulated event-based dataset with an unrealistic high density. Therefore, we hypothesize that our method significantly outperform ANNs in settings with lower event density, as seen in real-life event-based data. Our model is fully spiking and can be ported directly to neuromorphic hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于事件的目标跟踪的平移和尺度不变性
如果没有时间平均,比如速率码,训练脉冲神经网络用于时间回归任务仍然是一个挑战。在这项工作中,我们提出了一种新的方法来准确地预测空间坐标的事件数据与全尖峰卷积神经网络(SCNN)没有时间平均。我们的方法的性能与类似复杂性的人工神经网络(ANN)相当。此外,我们证明了使用平移不变和规模不变的接受域在一半的时间内更快地收敛。为了与传统的基于框架的人工神经网络进行比较,我们将结果建立在一个模拟的基于事件的数据集上,该数据集具有不切实际的高密度。因此,我们假设我们的方法在事件密度较低的情况下明显优于人工神经网络,正如在现实生活中基于事件的数据中所看到的那样。我们的模型是完全尖峰的,可以直接移植到神经形态硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sigma-Delta Networks for Robot Arm Control Easy and efficient spike-based Machine Learning with mlGeNN SupportHDC: Hyperdimensional Computing with Scalable Hypervector Sparsity Exploring Information-Theoretic Criteria to Accelerate the Tuning of Neuromorphic Level-Crossing ADCs Demonstration of neuromorphic sequence learning on a memristive array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1