{"title":"A 50µm pitch, 1120-channel, 20kHz frame rate microelectrode array for slice recording","authors":"Ben Johnson, S. Peace, T. A. Cleland, A. Molnar","doi":"10.1109/BIOCAS.2013.6679651","DOIUrl":null,"url":null,"abstract":"We present a 1,120 channel active microelectrode array with 50μm pitch recording sites for direct recording of neural slices. Every sensor site has a frontend low noise amplifier and photopixel for correlating optical stimulus with electrical activity. The frontend is AC-coupled and achieves area-efficiency by integrating the large input capacitor and recording electrode directly over the circuitry in conjunction with a single T-capacitor feedback network. Degraded PSRR (63dB) and CMRR (21dB) from the single feedback network are overcome by utilizing a virtual shared reference, improving rejection to 84dB and 66dB, respectively. Despite a small area, the frontend amplifier has an input-referred noise of 4.3μVrms with tunable high- and low-pass corners with very little variation from site-to-site. Experiments from a transgenic mouse olfactory bulb slice are shown. The array was implemented in a standard 180nm CMOS process.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2013.6679651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We present a 1,120 channel active microelectrode array with 50μm pitch recording sites for direct recording of neural slices. Every sensor site has a frontend low noise amplifier and photopixel for correlating optical stimulus with electrical activity. The frontend is AC-coupled and achieves area-efficiency by integrating the large input capacitor and recording electrode directly over the circuitry in conjunction with a single T-capacitor feedback network. Degraded PSRR (63dB) and CMRR (21dB) from the single feedback network are overcome by utilizing a virtual shared reference, improving rejection to 84dB and 66dB, respectively. Despite a small area, the frontend amplifier has an input-referred noise of 4.3μVrms with tunable high- and low-pass corners with very little variation from site-to-site. Experiments from a transgenic mouse olfactory bulb slice are shown. The array was implemented in a standard 180nm CMOS process.