Estimation-Theoretic Delayed Decoding of Predictively Encoded Video Sequences

Jingning Han, Vinay Melkote, K. Rose
{"title":"Estimation-Theoretic Delayed Decoding of Predictively Encoded Video Sequences","authors":"Jingning Han, Vinay Melkote, K. Rose","doi":"10.1109/DCC.2010.18","DOIUrl":null,"url":null,"abstract":"Current video coding schemes employ motion compensation to exploit the fact that the signal forms an auto-regressive process along the motion trajectory, and remove temporal redundancies with prior reconstructed samples via prediction. However, the decoder may, in principle, also exploit correlations with received encoding information of future frames. In contrast to current decoders that reconstruct every block immediately as the corresponding quantization indices are available, we propose an estimation-theoretic delayed decoding scheme which leverages quantization and motion information of one or more future frames to refine the reconstruction of the current block. The scheme, implemented in the transform domain, efficiently combines all available (including future) information in an appropriately derived conditional pdf, to obtain the optimal delayed reconstruction of each transform coefficient in the frame. Experiments demonstrate substantial gains over the standard H.264 decoder. The scheme learns the autoregressive model from information available to the decoder, and compatibility with the standard syntax and existing encoders is retained.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Current video coding schemes employ motion compensation to exploit the fact that the signal forms an auto-regressive process along the motion trajectory, and remove temporal redundancies with prior reconstructed samples via prediction. However, the decoder may, in principle, also exploit correlations with received encoding information of future frames. In contrast to current decoders that reconstruct every block immediately as the corresponding quantization indices are available, we propose an estimation-theoretic delayed decoding scheme which leverages quantization and motion information of one or more future frames to refine the reconstruction of the current block. The scheme, implemented in the transform domain, efficiently combines all available (including future) information in an appropriately derived conditional pdf, to obtain the optimal delayed reconstruction of each transform coefficient in the frame. Experiments demonstrate substantial gains over the standard H.264 decoder. The scheme learns the autoregressive model from information available to the decoder, and compatibility with the standard syntax and existing encoders is retained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测编码视频序列的估计理论延迟解码
当前的视频编码方案采用运动补偿来利用信号沿运动轨迹形成自回归过程的事实,并通过预测消除与先前重构样本的时间冗余。然而,解码器原则上也可以利用与接收到的未来帧的编码信息的相关性。当前的解码器在有相应的量化指标时立即重建每个块,与之相反,我们提出了一种估计理论的延迟解码方案,该方案利用量化和一个或多个未来帧的运动信息来改进当前块的重建。该方案在变换域中实现,有效地将所有可用(包括未来)信息组合在适当导出的条件pdf中,以获得帧中每个变换系数的最优延迟重构。实验表明,与标准的H.264解码器相比,该解码器的性能有很大提高。该方案从解码器可用的信息中学习自回归模型,并保持与标准语法和现有编码器的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shape Recognition Using Vector Quantization Lossless Reduced Cutset Coding of Markov Random Fields Optimized Analog Mappings for Distributed Source-Channel Coding An MCMC Approach to Lossy Compression of Continuous Sources Lossless Compression of Mapped Domain Linear Prediction Residual for ITU-T Recommendation G.711.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1