Handwritten Multi-Digit Recognition With Machine Learning

Soha Boroojerdi, George Rudolph
{"title":"Handwritten Multi-Digit Recognition With Machine Learning","authors":"Soha Boroojerdi, George Rudolph","doi":"10.1109/ietc54973.2022.9796722","DOIUrl":null,"url":null,"abstract":"Offline handwritten digit recognition is a well-known problem that remains at best partially solved. This paper presents a study of three different algorithms for offline handwritten multi-digit recognition using the MNIST dataset: Decision Trees, Multilayer Perceptrons and Random Forest. Our results indicate that Random Forest had the best accuracy at 96% with reasonable runtime performance. This kind of study is not novel-however, the authors developed a mechanism for reading multi-digit numbers from image files and webcams that may be of interest.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Offline handwritten digit recognition is a well-known problem that remains at best partially solved. This paper presents a study of three different algorithms for offline handwritten multi-digit recognition using the MNIST dataset: Decision Trees, Multilayer Perceptrons and Random Forest. Our results indicate that Random Forest had the best accuracy at 96% with reasonable runtime performance. This kind of study is not novel-however, the authors developed a mechanism for reading multi-digit numbers from image files and webcams that may be of interest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手写多数字识别与机器学习
离线手写数字识别是一个众所周知的问题,充其量只是部分解决了。本文使用MNIST数据集研究了三种不同的离线手写多数字识别算法:决策树、多层感知器和随机森林。我们的结果表明,随机森林的准确率达到96%,运行时性能合理。这种研究并不新奇——然而,作者开发了一种从图像文件和网络摄像头中读取多位数的机制,这可能会引起人们的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing a Blockchain for Managing Sensor Metadata in Exposure Health Studies Identifying Patterns in Fault Recovery Techniques and Hardware Status of Radiation Tolerant Computers Using Principal Components Analysis Sketch-a-Map (SAM): Creative Route Art Generation Feature Analysis in Satellite Image Classification Using LC-KSVD and Frozen Dictionary Learning Long Range Sensor Network for Disaster Relief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1