3D convolutional object recognition using volumetric representations of depth data

Ali Caglayan, Ahmet Burak Can
{"title":"3D convolutional object recognition using volumetric representations of depth data","authors":"Ali Caglayan, Ahmet Burak Can","doi":"10.23919/MVA.2017.7986817","DOIUrl":null,"url":null,"abstract":"Hand-crafted features are widely used in object recognition field. Recent advances in convolutional neural networks allow to extract features automatically and produce better results in object recognition without considering about feature design. Although RGB and depth data are used in some convolutional network based approaches, volumetric information hidden in depth data is not fully utilized. We present a 3D convolutional neural network based approach to utilize volumetric information extracted from depth data. Using a single depth image, a view-based incomplete 3D model is constructed. Although this method does not provide enough information to build a complete 3D model, it is still useful to recognize objects. To the best of our knowledge, the proposed approach is the first volumetric study on the Washington RGB-D Object Dataset and achieves results as competitive as the state-of-the-art works.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Hand-crafted features are widely used in object recognition field. Recent advances in convolutional neural networks allow to extract features automatically and produce better results in object recognition without considering about feature design. Although RGB and depth data are used in some convolutional network based approaches, volumetric information hidden in depth data is not fully utilized. We present a 3D convolutional neural network based approach to utilize volumetric information extracted from depth data. Using a single depth image, a view-based incomplete 3D model is constructed. Although this method does not provide enough information to build a complete 3D model, it is still useful to recognize objects. To the best of our knowledge, the proposed approach is the first volumetric study on the Washington RGB-D Object Dataset and achieves results as competitive as the state-of-the-art works.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维卷积对象识别使用深度数据的体积表示
手工特征在物体识别领域有着广泛的应用。卷积神经网络的最新进展允许在不考虑特征设计的情况下自动提取特征并产生更好的目标识别结果。虽然在一些基于卷积网络的方法中使用了RGB和深度数据,但深度数据中隐藏的体积信息没有得到充分利用。我们提出了一种基于三维卷积神经网络的方法来利用从深度数据中提取的体积信息。利用单幅深度图像,构建了基于视图的不完全三维模型。虽然这种方法不能提供足够的信息来建立一个完整的三维模型,但它对识别物体仍然是有用的。据我们所知,所提出的方法是华盛顿RGB-D对象数据集的第一个体积研究,并取得了与最先进的作品一样具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixture particle filter with block jump biomechanics constraint for volleyball players lower body parts tracking Event based surveillance video synopsis using trajectory kinematics descriptors Banknote portrait detection using convolutional neural network Ball-like observation model and multi-peak distribution estimation based particle filter for 3D Ping-pong ball tracking FPGA implementation of high frame rate and ultra-low delay vision system with local and global parallel based matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1