{"title":"Robust Frequency Stabilization of Renewable-Bio-Electric Vehicle Integrated Multi Microgrid under Diverse Structure Model Predictive Controller","authors":"A. Latif, Mohd Asim Aftab, S. M. Suhail Hussain","doi":"10.1109/SeFeT55524.2022.9908661","DOIUrl":null,"url":null,"abstract":"The microgrid exhibits a notable change in the frequency deviation $(\\Delta F)$ even for small perturbations in the connected load or weather dependent energy sources like solar, wind etc. Hence a secondary load frequency control is required for frequency stabilization in the microgrid. In this paper, a novel combination of model predictive controller (MPC) and tilt derivative called diverse structure model predictive controller (DSMPC) is proposed for multi microgrids. A multi microgrid is comprised of wind and solar tower power generation units, including bio generations and electric vehicle (EV) in both the areas. The performance of the proposed controller is compared against marine predator technique optimized DSMPC and MPC controls. Furthermore, the study investigates the impact EV in stabilizing the system frequency under the consideration of real-time wind data. A real-time hardware-in-the-loop (HIL) simulation platform is utilized to validate the proposed control approach.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFeT55524.2022.9908661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The microgrid exhibits a notable change in the frequency deviation $(\Delta F)$ even for small perturbations in the connected load or weather dependent energy sources like solar, wind etc. Hence a secondary load frequency control is required for frequency stabilization in the microgrid. In this paper, a novel combination of model predictive controller (MPC) and tilt derivative called diverse structure model predictive controller (DSMPC) is proposed for multi microgrids. A multi microgrid is comprised of wind and solar tower power generation units, including bio generations and electric vehicle (EV) in both the areas. The performance of the proposed controller is compared against marine predator technique optimized DSMPC and MPC controls. Furthermore, the study investigates the impact EV in stabilizing the system frequency under the consideration of real-time wind data. A real-time hardware-in-the-loop (HIL) simulation platform is utilized to validate the proposed control approach.