High-Speed Drone Detection Based On Yolo-V8

Jun-Hwa Kim, Namho Kim, C. Won
{"title":"High-Speed Drone Detection Based On Yolo-V8","authors":"Jun-Hwa Kim, Namho Kim, C. Won","doi":"10.1109/ICASSP49357.2023.10095516","DOIUrl":null,"url":null,"abstract":"Detecting drones in a video is a challenging problem due to their dynamic movements and varying range of scales. Moreover, since drone detection is often required for security, it should be as fast as possible. In this paper, we modify the state-of-the-art YOLO-V8 to achieve fast and reliable drone detection. Specifically, we add Multi-Scale Image Fusion and P2 Layer to the medium-size model (M-model) of YOLO-V8. Our model was evaluated in the 6th WOSDETC challenge.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Detecting drones in a video is a challenging problem due to their dynamic movements and varying range of scales. Moreover, since drone detection is often required for security, it should be as fast as possible. In this paper, we modify the state-of-the-art YOLO-V8 to achieve fast and reliable drone detection. Specifically, we add Multi-Scale Image Fusion and P2 Layer to the medium-size model (M-model) of YOLO-V8. Our model was evaluated in the 6th WOSDETC challenge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Yolo-V8的高速无人机检测
由于无人机的动态运动和尺度范围的变化,在视频中检测无人机是一个具有挑战性的问题。此外,由于无人机检测经常需要安全,因此应该尽可能快。在本文中,我们修改了最先进的YOLO-V8,以实现快速可靠的无人机检测。具体而言,我们将多尺度图像融合和P2层添加到YOLO-V8的中型模型(M-model)中。我们的模型在第六届WOSDETC挑战赛中进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightweight Machine Learning for Seizure Detection on Wearable Devices MSN-net: Multi-Scale Normality Network for Video Anomaly Detection ITER-SIS: Robust Unlimited Sampling Via Iterative Signal Sieving Streaming Multi-Channel Speech Separation with Online Time-Domain Generalized Wiener Filter MMATR: A Lightweight Approach for Multimodal Sentiment Analysis Based on Tensor Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1