{"title":"Robustness to noise of stereo matching","authors":"P. Leclercq, John Morris","doi":"10.1109/ICIAP.2003.1234117","DOIUrl":null,"url":null,"abstract":"We have measured the performance of several area-based stereo matching algorithms with noise added to synthetic images. Dense disparity maps were computed and compared with the ground truth using three metrics: the fraction of correctly computed disparities, the mean and the standard deviation of the disparity error distribution. For a noise-free image, S. Birchfield and C. Tomasi's pixel-to-pixel dynamic algorithm performed slightly better than a simple sum-of-absolute-differences algorithm (67% correct matches vs 65%) $considered to be within experimental error. A census algorithm performed worst at only 54%. The dynamic algorithm performed well until the S/N ratio reached 36 dB after which its performance started to drop. However, with correctly chosen parameters, it was superior to correlation and census algorithms until the images became very noisy (/spl sim/15 dB). The dynamic algorithm also ran faster than the fastest correlation algorithms using an optimum window radius of 4, and more than 10 times faster than the census algorithm.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
We have measured the performance of several area-based stereo matching algorithms with noise added to synthetic images. Dense disparity maps were computed and compared with the ground truth using three metrics: the fraction of correctly computed disparities, the mean and the standard deviation of the disparity error distribution. For a noise-free image, S. Birchfield and C. Tomasi's pixel-to-pixel dynamic algorithm performed slightly better than a simple sum-of-absolute-differences algorithm (67% correct matches vs 65%) $considered to be within experimental error. A census algorithm performed worst at only 54%. The dynamic algorithm performed well until the S/N ratio reached 36 dB after which its performance started to drop. However, with correctly chosen parameters, it was superior to correlation and census algorithms until the images became very noisy (/spl sim/15 dB). The dynamic algorithm also ran faster than the fastest correlation algorithms using an optimum window radius of 4, and more than 10 times faster than the census algorithm.