S. Wang, J. S. Spüntrup, B. Albrecht, C. Harendt, J. Burghartz
{"title":"Processing and Chracterisation of an Ultra-thin Image Sensor Chip in flexible Foil System","authors":"S. Wang, J. S. Spüntrup, B. Albrecht, C. Harendt, J. Burghartz","doi":"10.1109/fleps53764.2022.9781520","DOIUrl":null,"url":null,"abstract":"Since the late 20th century, there has been an increasing demand and interest for stretchable, bendable, and flexible electronics for different applications, such as medicine, wearable devices, and in industry applications. Unlike most image sensors, which are planar and inflexible, in this work, an ultra-thin image sensor is performed as a Hybrid System in Foil (HySiF) by using Chip-Film Patch technology, which is a concept for high-performance and ultra-thin flexible electronics. The technology allows the integration of ultra-thin chips and widely distributed electronic components, such as sensors, microcontrollers, or antennas, in thin flexible polymer film, using CMOS-compatible equipment and processing. In order to characterize this image sensor embedded in foil, an adapter board for the Andvantest 93000SOIC test system was developed. This paper demonstrates production process of the HySiF and its´ behavior and performance. In addition, the applications and future work of this bendable image sensor in foil system is discussed.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Since the late 20th century, there has been an increasing demand and interest for stretchable, bendable, and flexible electronics for different applications, such as medicine, wearable devices, and in industry applications. Unlike most image sensors, which are planar and inflexible, in this work, an ultra-thin image sensor is performed as a Hybrid System in Foil (HySiF) by using Chip-Film Patch technology, which is a concept for high-performance and ultra-thin flexible electronics. The technology allows the integration of ultra-thin chips and widely distributed electronic components, such as sensors, microcontrollers, or antennas, in thin flexible polymer film, using CMOS-compatible equipment and processing. In order to characterize this image sensor embedded in foil, an adapter board for the Andvantest 93000SOIC test system was developed. This paper demonstrates production process of the HySiF and its´ behavior and performance. In addition, the applications and future work of this bendable image sensor in foil system is discussed.