DAISTIN: A Data-Driven AIS Trajectory Interpolation Method

Búgvi Benjamin Magnussen, Nikolaj Bläser, Huan Lu
{"title":"DAISTIN: A Data-Driven AIS Trajectory Interpolation Method","authors":"Búgvi Benjamin Magnussen, Nikolaj Bläser, Huan Lu","doi":"10.1145/3609956.3609961","DOIUrl":null,"url":null,"abstract":"The Automatic Identification System (AIS) provides global vessel positioning data used in a variety of maritime applications. However, AIS suffers from transmission signal gaps, which causes vessels to disappear from AIS records for prolonged periods and poses a major challenge for the use of AIS data. In this paper, we propose a novel Data-driven AIS Trajectory INterpolation method (DAISTIN) to address AIS signal gaps. DAISTIN first makes use of massive raw AIS data to delicately construct a graph that well represents vessel movements. Next, given a gap between two locations A and B in an AIS trajectory, DAISTIN searches the graph for the shortest path from A to B and uses the path to interpolate the vessel’s whereabouts in between. To cope with large amounts of AIS data, we design a geometric sampling method for DAISTIN to select representative AIS data points for the graph construction. Finally, we design a postprocessing step for DAISTIN to fine-tune the quality of interpolated results. We conduct extensive experiments to compare DAISTIN with selected existing methods. The results verify the superiority of DAISTIN in terms of multiple performance metrics.","PeriodicalId":274777,"journal":{"name":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609956.3609961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Automatic Identification System (AIS) provides global vessel positioning data used in a variety of maritime applications. However, AIS suffers from transmission signal gaps, which causes vessels to disappear from AIS records for prolonged periods and poses a major challenge for the use of AIS data. In this paper, we propose a novel Data-driven AIS Trajectory INterpolation method (DAISTIN) to address AIS signal gaps. DAISTIN first makes use of massive raw AIS data to delicately construct a graph that well represents vessel movements. Next, given a gap between two locations A and B in an AIS trajectory, DAISTIN searches the graph for the shortest path from A to B and uses the path to interpolate the vessel’s whereabouts in between. To cope with large amounts of AIS data, we design a geometric sampling method for DAISTIN to select representative AIS data points for the graph construction. Finally, we design a postprocessing step for DAISTIN to fine-tune the quality of interpolated results. We conduct extensive experiments to compare DAISTIN with selected existing methods. The results verify the superiority of DAISTIN in terms of multiple performance metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种数据驱动的AIS轨迹插值方法
自动识别系统(AIS)提供用于各种海事应用的全球船舶定位数据。然而,AIS系统存在传输信号间隙,导致船只长时间从AIS记录中消失,这对AIS数据的使用构成了重大挑战。在本文中,我们提出了一种新的数据驱动AIS轨迹插值方法(DAISTIN)来解决AIS信号间隙问题。DAISTIN首先利用大量原始AIS数据,精细地构建一个很好地代表船只运动的图表。接下来,给定AIS轨迹中两个位置a和B之间的间隔,DAISTIN在图中搜索从a到B的最短路径,并使用该路径插值到两者之间的船只位置。为了处理大量AIS数据,我们设计了DAISTIN的几何采样方法,选择具有代表性的AIS数据点进行图的构建。最后,我们设计了DAISTIN的后处理步骤,以微调插值结果的质量。我们进行了大量的实验来比较DAISTIN与选定的现有方法。结果验证了DAISTIN在多个性能指标方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEAR: Dynamic Electric Ambulance Redeployment Towards Workload Trend Time Series Probabilistic Prediction via Probabilistic Deep Learning Scalable Spatial Analytics and In Situ Query Processing in DaskDB Highway Systems: How Good are They, Really? Harmonization-guided deep residual network for imputing under clouds with multi-sensor satellite imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1