Deep-Clustering Based Plant Disease Segmentation Network

Seong-Eui Lee, Sang-Ho Lee, Jong-Ok Kim
{"title":"Deep-Clustering Based Plant Disease Segmentation Network","authors":"Seong-Eui Lee, Sang-Ho Lee, Jong-Ok Kim","doi":"10.1109/ICEIC57457.2023.10049898","DOIUrl":null,"url":null,"abstract":"Plant disease is a major factor that reduces the yield of plant cultivation. To solve this problem, many CNN-based disease detection models have been studied. However, existing methods focus on detecting disease regions of plants with a clean or constant background of image, so they are not practical in actual fields. Field images captured with UAVs frequently suffer from complex backgrounds. To overcome this problem, we propose a CNN-based plant disease segmentation network based on deep clustering.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Plant disease is a major factor that reduces the yield of plant cultivation. To solve this problem, many CNN-based disease detection models have been studied. However, existing methods focus on detecting disease regions of plants with a clean or constant background of image, so they are not practical in actual fields. Field images captured with UAVs frequently suffer from complex backgrounds. To overcome this problem, we propose a CNN-based plant disease segmentation network based on deep clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度聚类的植物病害分割网络
植物病害是影响植物栽培产量的主要因素。为了解决这个问题,人们研究了许多基于cnn的疾病检测模型。然而,现有的方法主要是利用干净或恒定的图像背景来检测植物的病害区域,因此在实际应用中并不实用。用无人机捕获的野外图像经常受到复杂背景的影响。为了克服这个问题,我们提出了一种基于cnn的基于深度聚类的植物病害分割网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWT+DWT: Deep Learning Domain Generalization Techniques Using Discrete Wavelet Transform with Deep Whitening Transform Fast Virtual Keyboard Typing Using Vowel Hand Gesture Recognition A Study on Edge Computing-Based Microservices Architecture Supporting IoT Device Management and Artificial Intelligence Inference Efficient Pavement Crack Detection in Drone Images using Deep Neural Networks High Performance 3.3KV 4H-SiC MOSFET with a Floating Island and Hetero Junction Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1