Visually Grounded Follow-up Questions: a Dataset of Spatial Questions Which Require Dialogue History

T. Dong, Alberto Testoni, Luciana Benotti, R. Bernardi
{"title":"Visually Grounded Follow-up Questions: a Dataset of Spatial Questions Which Require Dialogue History","authors":"T. Dong, Alberto Testoni, Luciana Benotti, R. Bernardi","doi":"10.18653/v1/2021.splurobonlp-1.3","DOIUrl":null,"url":null,"abstract":"In this paper, we define and evaluate a methodology for extracting history-dependent spatial questions from visual dialogues. We say that a question is history-dependent if it requires (parts of) its dialogue history to be interpreted. We argue that some kinds of visual questions define a context upon which a follow-up spatial question relies. We call the question that restricts the context: trigger, and we call the spatial question that requires the trigger question to be answered: zoomer. We automatically extract different trigger and zoomer pairs based on the visual property that the questions rely on (e.g. color, number). We manually annotate the automatically extracted trigger and zoomer pairs to verify which zoomers require their trigger. We implement a simple baseline architecture based on a SOTA multimodal encoder. Our results reveal that there is much room for improvement for answering history-dependent questions.","PeriodicalId":442464,"journal":{"name":"Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics","volume":"126 26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.splurobonlp-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we define and evaluate a methodology for extracting history-dependent spatial questions from visual dialogues. We say that a question is history-dependent if it requires (parts of) its dialogue history to be interpreted. We argue that some kinds of visual questions define a context upon which a follow-up spatial question relies. We call the question that restricts the context: trigger, and we call the spatial question that requires the trigger question to be answered: zoomer. We automatically extract different trigger and zoomer pairs based on the visual property that the questions rely on (e.g. color, number). We manually annotate the automatically extracted trigger and zoomer pairs to verify which zoomers require their trigger. We implement a simple baseline architecture based on a SOTA multimodal encoder. Our results reveal that there is much room for improvement for answering history-dependent questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉的后续问题:需要对话历史的空间问题数据集
在本文中,我们定义并评估了一种从视觉对话中提取历史相关空间问题的方法。如果一个问题需要(部分)对话历史来解释,我们就说这个问题依赖于历史。我们认为,某些类型的视觉问题定义了后续空间问题所依赖的上下文。我们把限制上下文的问题称为“触发”,把需要回答触发问题的空间问题称为“缩放”。我们根据问题所依赖的视觉属性(如颜色、数字)自动提取不同的触发器和缩放对。我们手动标注自动提取的触发器和变焦体对,以验证哪些变焦体需要它们的触发器。我们实现了一个基于SOTA多模态编码器的简单基线架构。我们的研究结果表明,在回答历史相关问题方面还有很大的改进空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Level Gazetteer-Free Geocoding Interactive Reinforcement Learning for Table Balancing Robot Visually Grounded Follow-up Questions: a Dataset of Spatial Questions Which Require Dialogue History Symbol Grounding and Task Learning from Imperfect Corrections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1