Simulations in Terms of Radiation Effects on different BEOL Material Systems

K. Weide-Zaage, G. Payá-Vayá, Philemon Eichin
{"title":"Simulations in Terms of Radiation Effects on different BEOL Material Systems","authors":"K. Weide-Zaage, G. Payá-Vayá, Philemon Eichin","doi":"10.1109/EUROSIME.2019.8724581","DOIUrl":null,"url":null,"abstract":"Particle radiation on ground and especially in space is unavoidable. This may lead to unwanted failures in electronic devices due to the continuously downscaling of microelectronic structures. Thinking of the expectation of more than 8000 new launched satellites in the next few years the need of radiation hardened components comes more and more in focus. Due to the high costs of radiation hardened (Rad-Hard) components, the aim is to find commercials of the shelf (COTS) which meets the need for this kind of harsh environment. Beside air and space applications, automotive components have to be Rad-Hard as well. Such components are specially designed and tested for the application in automotive. It is well known that test time in all cases is expensive and time consuming. Furthermore, simulations are more and more desired to decrease test times and allow a deeper look into the physical behavior of components and devices. The influences of materials (heavy metal), metallization layers and thickness of the die and radiation energy of neutrons and gamma radiation and their interactions will be discussed and simulation results concerning technological influences will be shown.","PeriodicalId":357224,"journal":{"name":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2019.8724581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Particle radiation on ground and especially in space is unavoidable. This may lead to unwanted failures in electronic devices due to the continuously downscaling of microelectronic structures. Thinking of the expectation of more than 8000 new launched satellites in the next few years the need of radiation hardened components comes more and more in focus. Due to the high costs of radiation hardened (Rad-Hard) components, the aim is to find commercials of the shelf (COTS) which meets the need for this kind of harsh environment. Beside air and space applications, automotive components have to be Rad-Hard as well. Such components are specially designed and tested for the application in automotive. It is well known that test time in all cases is expensive and time consuming. Furthermore, simulations are more and more desired to decrease test times and allow a deeper look into the physical behavior of components and devices. The influences of materials (heavy metal), metallization layers and thickness of the die and radiation energy of neutrons and gamma radiation and their interactions will be discussed and simulation results concerning technological influences will be shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同BEOL材料系统的辐射效应模拟
地面上尤其是太空中的粒子辐射是不可避免的。由于微电子结构的不断缩小,这可能导致电子器件出现不必要的故障。考虑到未来几年将有8000多颗新发射的卫星,对抗辐射部件的需求越来越受到关注。由于辐射硬化(Rad-Hard)组件的高成本,目标是找到满足这种恶劣环境需求的货架(COTS)商业产品。除了航空和航天应用之外,汽车零部件也必须达到Rad-Hard标准。这些部件是专门为汽车应用而设计和测试的。众所周知,在所有情况下,测试时间都是昂贵和耗时的。此外,模拟越来越需要减少测试时间,并允许更深入地了解组件和设备的物理行为。将讨论材料(重金属)、金属化层和模具厚度以及中子和伽马辐射的辐射能量及其相互作用的影响,并展示有关技术影响的模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A SPICE-based Transient Thermal-Electronic Model for LEDs Electromigration Effects in Corroded BGA Accelerated Pump Out Testing for Thermal Greases Effect of material properties on PCB frequencies in electronic control unit Simulative Comparison of Polymer and Ceramic Encapsulation on SiC-MOSFET Power Modules under Thermomechanical Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1