{"title":"An Initial Investigation of Data-Lean Transfer Evolutionary Optimization with Probabilistic Priors","authors":"Ray Lim, Abhishek Gupta, Y. Ong","doi":"10.1109/CEC55065.2022.9870407","DOIUrl":null,"url":null,"abstract":"Transfer evolutionary optimization (TrEO) has emerged as a computational paradigm to leverage related problem-solving information from various source tasks to boost convergence rates in a target task. State-of-the-art Tr EO algorithms have utilized a source-target similarity capture method with probabilistic priors that grants the ability to reduce negative transfers. A recent work makes use of an additional solution representation learning module to induce high ordinal correlation between source and target objective functions through source-to-target search space mappings, with the aim of promoting positive transfers between them. However, current implementations of this approach are found to be data-intensive - calling for all generated source data to be cached - leading to high storage costs in practice. As an alternative, this paper investigates the feasibility of a data-lean variant of the aforesaid approach, labeled as (1, G)-TrEO, in which only the first and final (Gth) generations of source data are used for solution representation learning and transfer. We conduct experimental analyses of (1, G)-TrEO using multi-objective benchmark functions as well as a practical example in vehicle crashworthiness design. Our results show that a simple data-lean transfer optimizer is able to achieve competitive performance. While this paper presents a first investigation of (1, G)-TrEO, we hope that the findings would inspire future forms of data-lean TrEO algorithms.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transfer evolutionary optimization (TrEO) has emerged as a computational paradigm to leverage related problem-solving information from various source tasks to boost convergence rates in a target task. State-of-the-art Tr EO algorithms have utilized a source-target similarity capture method with probabilistic priors that grants the ability to reduce negative transfers. A recent work makes use of an additional solution representation learning module to induce high ordinal correlation between source and target objective functions through source-to-target search space mappings, with the aim of promoting positive transfers between them. However, current implementations of this approach are found to be data-intensive - calling for all generated source data to be cached - leading to high storage costs in practice. As an alternative, this paper investigates the feasibility of a data-lean variant of the aforesaid approach, labeled as (1, G)-TrEO, in which only the first and final (Gth) generations of source data are used for solution representation learning and transfer. We conduct experimental analyses of (1, G)-TrEO using multi-objective benchmark functions as well as a practical example in vehicle crashworthiness design. Our results show that a simple data-lean transfer optimizer is able to achieve competitive performance. While this paper presents a first investigation of (1, G)-TrEO, we hope that the findings would inspire future forms of data-lean TrEO algorithms.