{"title":"MPISec I/O: Providing Data Confidentiality in MPI-I/O","authors":"R. Prabhakar, C. Patrick, M. Kandemir","doi":"10.1109/CCGRID.2009.53","DOIUrl":null,"url":null,"abstract":"Applications performing scientific computations or processing streaming media benefit from parallel I/O significantly, as they operate on large data sets that require large I/O. MPI-I/O is a commonly used library interface in parallel applications to perform I/O efficiently. Optimizations like collective-I/O embedded in MPI-I/O allow multiple processes executing in parallel to perform I/O by merging requests of other processes and sharing them later. In such a scenario, preserving confidentiality of disk-resident data from unauthorized accesses by processes without significantly impacting performance of the application is a challenging task. In this paper, we evaluate the impact of ensuring data-confidentiality in MPI-I/O on the performance of parallel applications and provide an enhanced interface, called MPISec I/O, which brings an average overhead of only 5.77% over MPI-I/O in the best case, and about 7.82% in the average case.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"2019 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Applications performing scientific computations or processing streaming media benefit from parallel I/O significantly, as they operate on large data sets that require large I/O. MPI-I/O is a commonly used library interface in parallel applications to perform I/O efficiently. Optimizations like collective-I/O embedded in MPI-I/O allow multiple processes executing in parallel to perform I/O by merging requests of other processes and sharing them later. In such a scenario, preserving confidentiality of disk-resident data from unauthorized accesses by processes without significantly impacting performance of the application is a challenging task. In this paper, we evaluate the impact of ensuring data-confidentiality in MPI-I/O on the performance of parallel applications and provide an enhanced interface, called MPISec I/O, which brings an average overhead of only 5.77% over MPI-I/O in the best case, and about 7.82% in the average case.