V. Vijayan, K. Bowyer, P. Flynn, Di Huang, Liming Chen, M. Hansen, Omar Ocegueda, S. Shah, I. Kakadiaris
{"title":"Twins 3D face recognition challenge","authors":"V. Vijayan, K. Bowyer, P. Flynn, Di Huang, Liming Chen, M. Hansen, Omar Ocegueda, S. Shah, I. Kakadiaris","doi":"10.1109/IJCB.2011.6117491","DOIUrl":null,"url":null,"abstract":"Existing 3D face recognition algorithms have achieved high enough performances against public datasets like FRGC v2, that it is difficult to achieve further significant increases in recognition performance. However, the 3D TEC dataset is a more challenging dataset which consists of 3D scans of 107 pairs of twins that were acquired in a single session, with each subject having a scan of a neutral expression and a smiling expression. The combination of factors related to the facial similarity of identical twins and the variation in facial expression makes this a challenging dataset. We conduct experiments using state of the art face recognition algorithms and present the results. Our results indicate that 3D face recognition of identical twins in the presence of varying facial expressions is far from a solved problem, but that good performance is possible.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67
Abstract
Existing 3D face recognition algorithms have achieved high enough performances against public datasets like FRGC v2, that it is difficult to achieve further significant increases in recognition performance. However, the 3D TEC dataset is a more challenging dataset which consists of 3D scans of 107 pairs of twins that were acquired in a single session, with each subject having a scan of a neutral expression and a smiling expression. The combination of factors related to the facial similarity of identical twins and the variation in facial expression makes this a challenging dataset. We conduct experiments using state of the art face recognition algorithms and present the results. Our results indicate that 3D face recognition of identical twins in the presence of varying facial expressions is far from a solved problem, but that good performance is possible.