Burrows-Wheeler Transform and combination of Move-to-Front coding and Run Length Encoding for lossless audio coding

H. Elsayed
{"title":"Burrows-Wheeler Transform and combination of Move-to-Front coding and Run Length Encoding for lossless audio coding","authors":"H. Elsayed","doi":"10.1109/ICCES.2014.7030985","DOIUrl":null,"url":null,"abstract":"This paper presents a lossless audio coding using Burrows-Wheeler Transform (BWT) and a combination of a Move-To-Front coding (MTF) and Run Length Encoding (RLE). Audio signals used are assumed to be of floating point values. The BWT is applied to this floating point values to get the transformed coefficients; and then these resulting coefficients are converted using the Move-to-Front coding to coefficients can be better compressed and then these resulting coefficients are compressed using a combination of the Run Length Encoding, and entropy coding. Two entropy coding are used which are Arithmetic and Huffman coding. Simulation results show that the proposed lossless audio coding method outperforms other lossless audio coding methods; using only Burrows-Wheeler Transform method, using combined Burrows-Wheeler Transform and Move-to-Front coding method, and using combined Burrows-Wheeler Transform and Run Length Encoding method.","PeriodicalId":339697,"journal":{"name":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2014.7030985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a lossless audio coding using Burrows-Wheeler Transform (BWT) and a combination of a Move-To-Front coding (MTF) and Run Length Encoding (RLE). Audio signals used are assumed to be of floating point values. The BWT is applied to this floating point values to get the transformed coefficients; and then these resulting coefficients are converted using the Move-to-Front coding to coefficients can be better compressed and then these resulting coefficients are compressed using a combination of the Run Length Encoding, and entropy coding. Two entropy coding are used which are Arithmetic and Huffman coding. Simulation results show that the proposed lossless audio coding method outperforms other lossless audio coding methods; using only Burrows-Wheeler Transform method, using combined Burrows-Wheeler Transform and Move-to-Front coding method, and using combined Burrows-Wheeler Transform and Run Length Encoding method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Burrows-Wheeler变换和移动到前端编码和运行长度编码的组合用于无损音频编码
本文提出了一种利用Burrows-Wheeler变换(BWT)和移动到前编码(MTF)和运行长度编码(RLE)相结合的无损音频编码方法。使用的音频信号被假定为浮点值。对这些浮点值应用BWT得到变换后的系数;然后这些结果系数被转换使用移动到前面编码的系数可以更好地压缩,然后这些结果系数被压缩使用运行长度编码,和熵编码的组合。采用了算术和霍夫曼两种熵编码。仿真结果表明,所提出的无损音频编码方法优于其他无损音频编码方法;仅使用Burrows-Wheeler变换方法,使用Burrows-Wheeler变换和移动到前的组合编码方法,以及使用Burrows-Wheeler变换和运行长度编码方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations and performance evaluation of Real-Time Multi-core Systems An Enhanced Queries Scheduler for query processing over a cloud environment EMD thresholding and denoising inspired by wavelet technique A proposed SNOMED CT ontology-based encoding methodology for diabetes diagnosis case-base A proposed framework for robust face identification system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1