May-happen-in-parallel analysis with static vector clocks

Qing Zhou, Lian Li, Lei Wang, Jingling Xue, Xiaobing Feng
{"title":"May-happen-in-parallel analysis with static vector clocks","authors":"Qing Zhou, Lian Li, Lei Wang, Jingling Xue, Xiaobing Feng","doi":"10.1145/3168813","DOIUrl":null,"url":null,"abstract":"May-Happen-in-Parallel (MHP) analysis computes whether two statements in a multi-threaded program may execute concurrently or not. It works as a basis for many analyses and optimization techniques of concurrent programs. This paper proposes a novel approach for MHP analysis, by statically computing vector clocks. Static vector clocks extend the classic vector clocks algorithm to handle the complex control flow structures in static analysis, and we have developed an efficient context-sensitive algorithm to compute them. To the best of our knowledge, this is the first attempt to compute vector clocks statically. Using static vector clocks, we can drastically improve the efficiency of existing MHP analyses, without loss of precision: the performance speedup can be up to 1828X, with a much smaller memory footprint (reduced by up to 150X). We have implemented our analysis in a static data race detector, and experimental results show that our MHP analysis can help remove up to 88% of spurious data race pairs.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"23 14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

May-Happen-in-Parallel (MHP) analysis computes whether two statements in a multi-threaded program may execute concurrently or not. It works as a basis for many analyses and optimization techniques of concurrent programs. This paper proposes a novel approach for MHP analysis, by statically computing vector clocks. Static vector clocks extend the classic vector clocks algorithm to handle the complex control flow structures in static analysis, and we have developed an efficient context-sensitive algorithm to compute them. To the best of our knowledge, this is the first attempt to compute vector clocks statically. Using static vector clocks, we can drastically improve the efficiency of existing MHP analyses, without loss of precision: the performance speedup can be up to 1828X, with a much smaller memory footprint (reduced by up to 150X). We have implemented our analysis in a static data race detector, and experimental results show that our MHP analysis can help remove up to 88% of spurious data race pairs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可能发生的并行分析与静态矢量时钟
可能并行(MHP)分析计算多线程程序中的两个语句是否可以并发执行。它是许多并发程序分析和优化技术的基础。本文提出了一种新的MHP分析方法,即静态计算矢量时钟。静态矢量时钟扩展了经典的矢量时钟算法来处理静态分析中复杂的控制流结构,我们开发了一种高效的上下文敏感算法来计算它们。据我们所知,这是第一次尝试静态计算矢量时钟。使用静态矢量时钟,我们可以大大提高现有MHP分析的效率,而不会损失精度:性能加速可达1828X,内存占用更小(减少多达150X)。我们已经在一个静态数据竞争检测器中实现了我们的分析,实验结果表明我们的MHP分析可以帮助去除高达88%的虚假数据竞争对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance stencil code generation with Lift DeLICM: scalar dependence removal at zero memory cost Local memory-aware kernel perforation Analyzing and optimizing task granularity on the JVM Lightweight detection of cache conflicts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1