Detecting Bottleneck Use of PIE or FQ-CoDel Active Queue Management During DASH-like Content Streaming

Jonathan Kua, P. Branch, G. Armitage
{"title":"Detecting Bottleneck Use of PIE or FQ-CoDel Active Queue Management During DASH-like Content Streaming","authors":"Jonathan Kua, P. Branch, G. Armitage","doi":"10.1109/LCN48667.2020.9314804","DOIUrl":null,"url":null,"abstract":"Dynamic Adaptive Streaming over HTTP (DASH) is a widely adopted standard for delivering high Quality of Experience (QoE) for consumer video streaming applications. The progressive deployment of Active Queue Management (AQM) schemes – such as PIE and FQ-CoDel – at ISP bottlenecks or home gateways means that consumers’ video streams are increasingly impacted by such AQM schemes. However, many existing approaches do not consider adjusting streaming strategies based on the bottleneck queue types. We have previously demonstrated the benefits of AQM schemes for DASH video streams, and proposed adaptive chunklets for an improved streaming performance. In this paper, we demonstrate the problems of queue-agnostic streaming and propose a queue-detection technique during DASH-like streaming. This entirely client-side and application-level technique is capable of detecting likely FIFO, PIE and FQ-CoDel AQM schemes at network bottlenecks.","PeriodicalId":245782,"journal":{"name":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN48667.2020.9314804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Dynamic Adaptive Streaming over HTTP (DASH) is a widely adopted standard for delivering high Quality of Experience (QoE) for consumer video streaming applications. The progressive deployment of Active Queue Management (AQM) schemes – such as PIE and FQ-CoDel – at ISP bottlenecks or home gateways means that consumers’ video streams are increasingly impacted by such AQM schemes. However, many existing approaches do not consider adjusting streaming strategies based on the bottleneck queue types. We have previously demonstrated the benefits of AQM schemes for DASH video streams, and proposed adaptive chunklets for an improved streaming performance. In this paper, we demonstrate the problems of queue-agnostic streaming and propose a queue-detection technique during DASH-like streaming. This entirely client-side and application-level technique is capable of detecting likely FIFO, PIE and FQ-CoDel AQM schemes at network bottlenecks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在类dash内容流中使用PIE或FQ-CoDel主动队列管理检测瓶颈
基于HTTP的动态自适应流(DASH)是一种广泛采用的标准,用于为消费者视频流应用程序提供高质量的体验(QoE)。主动队列管理(AQM)方案(如PIE和FQ-CoDel)在ISP瓶颈或家庭网关的逐步部署意味着消费者的视频流越来越多地受到此类AQM方案的影响。然而,许多现有的方法没有考虑根据瓶颈队列类型调整流策略。我们之前已经展示了AQM方案对DASH视频流的好处,并提出了自适应小块来提高流性能。在本文中,我们演示了队列不可知流的问题,并提出了一种在类dash流过程中的队列检测技术。这种完全的客户端和应用级技术能够在网络瓶颈处检测可能的FIFO, PIE和FQ-CoDel AQM方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging MEC in a 5G System for Enhanced Back Situation Awareness L3SFA: Load Shifting Strategy for Spreading Factor Allocation in LoRaWAN Systems PLEDGE: An IoT-oriented Proof-of-Honesty based Blockchain Consensus Protocol Don’t Stop at the Top: Using Certificate Transparency Logs to Extend Domain Lists for Web Security Studies SETA: Scalable Encrypted Traffic Analytics in Multi-Gbps Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1