Edgeless active contouring, for vector-valued natural image segmentation

S. Kulkarni, Vimlesh Kumar, B. N. Chatterji
{"title":"Edgeless active contouring, for vector-valued natural image segmentation","authors":"S. Kulkarni, Vimlesh Kumar, B. N. Chatterji","doi":"10.1109/TENCON.2003.1273204","DOIUrl":null,"url":null,"abstract":"We propose here an efficient geometric active contouring method based on the level set approach for extracting objects from natural images described in vector-valued form. Natural images are characterized by absence of global minima for mean squared error, an energy minimization formulation based on the the principles of the calculus of variations, that helps in effective segmentation based on boundary information. The approach adopted is to treat this segmentation as a minimum partition approximation problem, using additional regularization terms. The constraints for stopping the evolving curve are derived by coupling information from each of the vectors of the vector described image. The coupling effect from each vector increases the segmentation accuracy. The results are qualitatively compared with an existing Chan et al. (1999) model and are found to be much superior.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose here an efficient geometric active contouring method based on the level set approach for extracting objects from natural images described in vector-valued form. Natural images are characterized by absence of global minima for mean squared error, an energy minimization formulation based on the the principles of the calculus of variations, that helps in effective segmentation based on boundary information. The approach adopted is to treat this segmentation as a minimum partition approximation problem, using additional regularization terms. The constraints for stopping the evolving curve are derived by coupling information from each of the vectors of the vector described image. The coupling effect from each vector increases the segmentation accuracy. The results are qualitatively compared with an existing Chan et al. (1999) model and are found to be much superior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无边缘主动轮廓,用于矢量值自然图像分割
本文提出了一种基于水平集的高效几何主动轮廓方法,用于从向量值形式描述的自然图像中提取目标。自然图像的特点是缺乏均方误差的全局最小值,这是一种基于变分原理的能量最小化公式,有助于基于边界信息的有效分割。采用的方法是使用额外的正则化项将此分割视为最小分割近似问题。通过从矢量描述图像的每个矢量中耦合信息,推导出停止曲线演化的约束条件。每个向量的耦合效应提高了分割精度。结果与现有的Chan et al.(1999)模型进行了定性比较,发现要优越得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Script to speech conversion for Marathi language Parameter optimization and rule base selection for fuzzy impulse filters using evolutionary algorithms VHDL based design of an FDWT processor High frequency industrial power supplies using inductor alternators driven by bio-mass gasifier based systems Adaptive estimation of parameters using partial information of desired outputs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1