{"title":"A LIGHTWEIGHT SYSTEM TOWARDS VIEWING ANGLE AND CLOTHING VARIATION IN GAIT RECOGNITION","authors":"","doi":"10.4018/ijbdia.287616","DOIUrl":null,"url":null,"abstract":"In this paper, the authors have proposed a computationally efficient, robust, and lightweight system for gait recognition. The proposed system contains two main stages: In the first stage, a classification network identifies optical flow corners in the normalized silhouette and calculates the distances traveled in every viewpoint which is further used by a regression model to identify the viewing angle. In the second stage, a feature extraction network computes the Gait Energy Image (GEI) for every viewpoint and then uses Principal Component Analysis (PCA) to extract low dimensional feature vectors from these GEI images. Finally, a multi-layer perceptron model is trained using the extracted principal components for every viewing angle. The performance of a system is comprehensively evaluated on the CASIA B and OULP gait dataset. The experimental results demonstrate the superior performance of a proposed system in viewing angle classification (100% accuracy), gait recognition (100% accuracy in normal walk), computational efficiency, robustness to clothing, and viewing angle variation.","PeriodicalId":272065,"journal":{"name":"International Journal of Big Data Intelligence and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Big Data Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijbdia.287616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, the authors have proposed a computationally efficient, robust, and lightweight system for gait recognition. The proposed system contains two main stages: In the first stage, a classification network identifies optical flow corners in the normalized silhouette and calculates the distances traveled in every viewpoint which is further used by a regression model to identify the viewing angle. In the second stage, a feature extraction network computes the Gait Energy Image (GEI) for every viewpoint and then uses Principal Component Analysis (PCA) to extract low dimensional feature vectors from these GEI images. Finally, a multi-layer perceptron model is trained using the extracted principal components for every viewing angle. The performance of a system is comprehensively evaluated on the CASIA B and OULP gait dataset. The experimental results demonstrate the superior performance of a proposed system in viewing angle classification (100% accuracy), gait recognition (100% accuracy in normal walk), computational efficiency, robustness to clothing, and viewing angle variation.