A fast Geodesic Active Contour model for medical images segmentation using prior analysis

S. Sharif, Mohamed Deriche, N. Maalej
{"title":"A fast Geodesic Active Contour model for medical images segmentation using prior analysis","authors":"S. Sharif, Mohamed Deriche, N. Maalej","doi":"10.1109/IPTA.2010.5586749","DOIUrl":null,"url":null,"abstract":"The deformable Geodesic Active Contour (GAC) method is one of the most important techniques used in object boundaries detection in images. In this work, we modify the automatic GAC technique by incorporating priori information extracted from the region of interest. We introduce a new stopping function to speed up convergence and improve accuracy. The proposed technique was applied to both synthetic and real medical images. We show an improvement in speed of more than 40% together with an excellent accuracy compared to the traditional GAC model.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The deformable Geodesic Active Contour (GAC) method is one of the most important techniques used in object boundaries detection in images. In this work, we modify the automatic GAC technique by incorporating priori information extracted from the region of interest. We introduce a new stopping function to speed up convergence and improve accuracy. The proposed technique was applied to both synthetic and real medical images. We show an improvement in speed of more than 40% together with an excellent accuracy compared to the traditional GAC model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于先验分析的医学图像分割快速测地主动轮廓模型
可变形测地线活动轮廓(GAC)方法是图像中目标边界检测的重要技术之一。在这项工作中,我们通过加入从感兴趣区域提取的先验信息来改进自动GAC技术。我们引入了一个新的停止函数来加速收敛和提高精度。将该方法应用于合成图像和真实医学图像。与传统的GAC模型相比,我们的速度提高了40%以上,并且具有出色的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1