Deep Learning for the Estimation of the Longitudinal Slip Ratio

Raffaele Marotta, Valentin Ivanov, S. Strano, M. Terzo, C. Tordela
{"title":"Deep Learning for the Estimation of the Longitudinal Slip Ratio","authors":"Raffaele Marotta, Valentin Ivanov, S. Strano, M. Terzo, C. Tordela","doi":"10.1109/MetroAutomotive57488.2023.10219139","DOIUrl":null,"url":null,"abstract":"In a road vehicle, the interaction forces between tire and road are strongly influenced by the longitudinal slip ratio. This kinematic quantity, therefore, represents one of the most important in the study of vehicle dynamics. The real-time knowledge of this quantity can allow the estimation of the interaction forces and the development of control systems to improve safety and handling. In particular, Anti-lock Braking Systems (ABS) and Traction Control Systems (TCS). Direct measurements of this quantity would require the insertion of sensors inside the tire, with consequent manufacturing complexity and increased costs. This paper proposes an estimate of the longitudinal slip ratio based on other easily measurable or estimable quantities. This estimator makes use of Neural Networks and is based on preliminary physical considerations.","PeriodicalId":115847,"journal":{"name":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAutomotive57488.2023.10219139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a road vehicle, the interaction forces between tire and road are strongly influenced by the longitudinal slip ratio. This kinematic quantity, therefore, represents one of the most important in the study of vehicle dynamics. The real-time knowledge of this quantity can allow the estimation of the interaction forces and the development of control systems to improve safety and handling. In particular, Anti-lock Braking Systems (ABS) and Traction Control Systems (TCS). Direct measurements of this quantity would require the insertion of sensors inside the tire, with consequent manufacturing complexity and increased costs. This paper proposes an estimate of the longitudinal slip ratio based on other easily measurable or estimable quantities. This estimator makes use of Neural Networks and is based on preliminary physical considerations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纵向滑移比估计的深度学习
在公路车辆中,轮胎与路面之间的相互作用力受到纵向滑移率的强烈影响。因此,这个运动学量是研究车辆动力学中最重要的量之一。这一数量的实时知识可以使相互作用力的估计和控制系统的发展,以提高安全性和处理。特别是防抱死制动系统(ABS)和牵引控制系统(TCS)。直接测量这一数量需要在轮胎内部插入传感器,从而增加了制造的复杂性和成本。本文提出了一种基于其他容易测量或估计的量的纵向滑移比的估计方法。该估计器利用神经网络,并基于初步的物理考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A strain-based estimation of tire-road forces through a supervised learning approach Anti-Interference Algorithm of Environment-Aware Millimeter Wave Radar An Adaptive TinyML Unsupervised Online Learning Algorithm for Driver Behavior Analysis Research on Automatic Calibration Method of Transmission Loss for Millimeter-Wave Radar Testing System in Intelligent Vehicle Exponential degradation model for Remaining Useful Life estimation of electrolytic capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1