Machine Learning-Based Clustering of Load Profiling to Study the Impact of Electric Vehicles on Smart Meter Applications

Saeed Ahmed, Z. Khan, N. Gul, Junsu Kim, S. Kim
{"title":"Machine Learning-Based Clustering of Load Profiling to Study the Impact of Electric Vehicles on Smart Meter Applications","authors":"Saeed Ahmed, Z. Khan, N. Gul, Junsu Kim, S. Kim","doi":"10.1109/ICUFN49451.2021.9528396","DOIUrl":null,"url":null,"abstract":"The data collected from advanced metering infrastructure enables the electric utilities to develop a deep insight about the energy consumption behavior of the consumer. However, the load signature and consumption pattern varies due to addition of multiple types of new loads, such as electric vehicles (EVs). Therefore, it becomes imminent to further dig down these variations. To this end, this paper investigates the impacts of insertion of EV profiles in the household level smart meter data. The Irish CER dataset and EV data from the NREL residential PEV are utilized in this study to classify the users with and without EVs' loads. The results show that change in the cluster membership can help to separate the consumers with the EV load from the stand-alone consumers without the EV load.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The data collected from advanced metering infrastructure enables the electric utilities to develop a deep insight about the energy consumption behavior of the consumer. However, the load signature and consumption pattern varies due to addition of multiple types of new loads, such as electric vehicles (EVs). Therefore, it becomes imminent to further dig down these variations. To this end, this paper investigates the impacts of insertion of EV profiles in the household level smart meter data. The Irish CER dataset and EV data from the NREL residential PEV are utilized in this study to classify the users with and without EVs' loads. The results show that change in the cluster membership can help to separate the consumers with the EV load from the stand-alone consumers without the EV load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的负荷分布聚类研究电动汽车对智能电表应用的影响
从先进的计量基础设施收集的数据使电力公司能够深入了解消费者的能源消耗行为。然而,由于增加了多种类型的新负载,例如电动汽车(ev),负载特征和消耗模式会发生变化。因此,进一步挖掘这些变异已迫在眉睫。为此,本文研究了在家庭级智能电表数据中插入电动汽车型材的影响。本研究利用爱尔兰CER数据集和来自NREL住宅PEV的EV数据对有和没有EV负载的用户进行分类。结果表明,集群成员的变化有助于将具有EV负载的消费者与不具有EV负载的独立消费者分开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Augmented Reality Musical Service Part 1 for Non-face-to-face Watching by Multiple Audiences Performance Analysis of Cell-Free mmWave Massive MIMO with Low-Resolution DAC Quantization Efficient Task Offloading for MEC-Enabled Vehicular Networks: A Non-Cooperative Game Theoretic Approach High Efficiency & Low Area DC-DC Buck Converter with the Digital Feedback Loop for the Wireless Applications Interesting Projects To Strenghthen DSP Teaching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1