Yves Gendrault, M. Madec, V. Wlotzko, C. Lallement, J. Haiech
{"title":"Fuzzy logic, an intermediate description level for design and simulation in synthetic biology","authors":"Yves Gendrault, M. Madec, V. Wlotzko, C. Lallement, J. Haiech","doi":"10.1109/BioCAS.2013.6679716","DOIUrl":null,"url":null,"abstract":"Synthetic biology, or biological engineering, is a new science which may take advantage of the know-how of engineering science in order to build new in-vivo biological functions. The complete design process implies lots of modeling and simulation tasks. The design flow for this technology uses “digital” models at high level of abstraction as well as “analogue” ones at low level. Nevertheless, contrary to electronics, high-level digital descriptions are far away from low-level ones. In this paper, an intermediate modeling level using the principle of fuzzy logic is proposed to fill the gap between high and low abstraction level. The main advantage of this approach is to obtain quantitative simulation results while keeping a behavioral description of mechanisms. This is pointed out through two examples. The first one, encountered in literature, tends to prove that this modeling level is sufficient to obtain reliable results in comparison with the experimental ones. The second one, which is more theoretical, demonstrates the interest of fuzzy logic from a designing point of view.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Synthetic biology, or biological engineering, is a new science which may take advantage of the know-how of engineering science in order to build new in-vivo biological functions. The complete design process implies lots of modeling and simulation tasks. The design flow for this technology uses “digital” models at high level of abstraction as well as “analogue” ones at low level. Nevertheless, contrary to electronics, high-level digital descriptions are far away from low-level ones. In this paper, an intermediate modeling level using the principle of fuzzy logic is proposed to fill the gap between high and low abstraction level. The main advantage of this approach is to obtain quantitative simulation results while keeping a behavioral description of mechanisms. This is pointed out through two examples. The first one, encountered in literature, tends to prove that this modeling level is sufficient to obtain reliable results in comparison with the experimental ones. The second one, which is more theoretical, demonstrates the interest of fuzzy logic from a designing point of view.