Survey of Applications of Neural Networks and Machine Learning to COVID-19 Predictions

R. Segall
{"title":"Survey of Applications of Neural Networks and Machine Learning to COVID-19 Predictions","authors":"R. Segall","doi":"10.4018/978-1-7998-8455-2.ch002","DOIUrl":null,"url":null,"abstract":"The purpose of this chapter is to illustrate how artificial intelligence (AI) technologies have been used for COVID-19 detection and analysis. Specifically, the use of neural networks (NN) and machine learning (ML) are described along with which countries are creating these techniques and how these are being used for COVID-19 diagnosis and detection. Illustrations of multi-layer convolutional neural networks (CNN), recurrent neural networks (RNN), and deep neural networks (DNN) are provided to show how these are used for COVID-19 detection and prediction. A summary of big data analytics for COVID-19 and some available COVID-19 open-source data sets and repositories and their characteristics for research and analysis are also provided. An example is also shown for artificial intelligence (AI) and neural network (NN) applications using real-time COVID-19 data.","PeriodicalId":250689,"journal":{"name":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8455-2.ch002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The purpose of this chapter is to illustrate how artificial intelligence (AI) technologies have been used for COVID-19 detection and analysis. Specifically, the use of neural networks (NN) and machine learning (ML) are described along with which countries are creating these techniques and how these are being used for COVID-19 diagnosis and detection. Illustrations of multi-layer convolutional neural networks (CNN), recurrent neural networks (RNN), and deep neural networks (DNN) are provided to show how these are used for COVID-19 detection and prediction. A summary of big data analytics for COVID-19 and some available COVID-19 open-source data sets and repositories and their characteristics for research and analysis are also provided. An example is also shown for artificial intelligence (AI) and neural network (NN) applications using real-time COVID-19 data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络和机器学习在COVID-19预测中的应用综述
本章的目的是说明人工智能(AI)技术如何用于COVID-19的检测和分析。具体而言,介绍了神经网络(NN)和机器学习(ML)的使用,以及哪些国家正在开发这些技术,以及如何将这些技术用于COVID-19的诊断和检测。本文提供了多层卷积神经网络(CNN)、循环神经网络(RNN)和深度神经网络(DNN)的示例,以展示如何将它们用于COVID-19检测和预测。总结了新冠肺炎大数据分析和一些现有的新冠肺炎开源数据集和存储库及其特点,供研究分析。还举例说明了人工智能(AI)和神经网络(NN)应用实时COVID-19数据的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Airbnb (Air Bed and Breakfast) Listing Analysis Through Machine Learning Techniques Value Analysis and Prediction Through Machine Learning Techniques for Popular Basketball Brands Protein-Protein Interactions (PPI) via Deep Neural Network (DNN) US Medical Expense Analysis Through Frequency and Severity Bootstrapping and Regression Model Inflation Rate Modelling Through a Hybrid Model of Seasonal Autoregressive Moving Average and Multilayer Perceptron Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1