Impact of InxGa1−x composition and source Zn diffusion temperature on intrinsic voltage gain in InGaAs TFETs

C. Bordallo, J. Martino, P. Agopian, A. Alian, Y. Mois, R. Rooyackers, A. Vandooren, A. Verhulst, E. Simoen, C. Claeys, N. Collaert, A. Thean
{"title":"Impact of InxGa1−x composition and source Zn diffusion temperature on intrinsic voltage gain in InGaAs TFETs","authors":"C. Bordallo, J. Martino, P. Agopian, A. Alian, Y. Mois, R. Rooyackers, A. Vandooren, A. Verhulst, E. Simoen, C. Claeys, N. Collaert, A. Thean","doi":"10.1109/S3S.2016.7804393","DOIUrl":null,"url":null,"abstract":"This work reports for the first time on the experimental study of the intrinsic voltage gain of InGaAs nTFET. The influence of Indium/Gallium composition and Zn diffusion temperature is analyzed. For a higher Indium amount (In0.7Ga0.3As compared to In0.53Ga0.47As) the band to band tunneling (BTBT) is improved due to bandgap narrowing. A higher Zn diffusion temperature gives rise to a higher source doping, resulting in a smaller tunneling length, which also increases BTBT. In both devices the intrinsic voltage gain is improved. One interesting characteristic of these devices is that they present good analog performance at low voltages (VGS=VDS=0.6V), which is promising for low power/low voltage analog applications. High-temperature operation increases in all cases more the output conductance than the transconductance, resulting in a lower intrinsic voltage gain.","PeriodicalId":145660,"journal":{"name":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2016.7804393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work reports for the first time on the experimental study of the intrinsic voltage gain of InGaAs nTFET. The influence of Indium/Gallium composition and Zn diffusion temperature is analyzed. For a higher Indium amount (In0.7Ga0.3As compared to In0.53Ga0.47As) the band to band tunneling (BTBT) is improved due to bandgap narrowing. A higher Zn diffusion temperature gives rise to a higher source doping, resulting in a smaller tunneling length, which also increases BTBT. In both devices the intrinsic voltage gain is improved. One interesting characteristic of these devices is that they present good analog performance at low voltages (VGS=VDS=0.6V), which is promising for low power/low voltage analog applications. High-temperature operation increases in all cases more the output conductance than the transconductance, resulting in a lower intrinsic voltage gain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InxGa1−x成分和源Zn扩散温度对InGaAs tfet本征电压增益的影响
本文首次报道了InGaAs非管场效应晶体管本征电压增益的实验研究。分析了铟镓组成和锌扩散温度对反应的影响。当铟含量较高时(In0.7Ga0.3As与In0.53Ga0.47As相比),由于带隙缩小,带间隧道效应(BTBT)得到改善。Zn扩散温度越高,源掺杂越高,隧道长度越小,BTBT也随之增加。这两种器件的固有电压增益都得到了提高。这些器件的一个有趣的特点是它们在低电压(VGS=VDS=0.6V)下具有良好的模拟性能,这对于低功耗/低电压模拟应用很有希望。在所有情况下,高温操作增加的输出电导都大于跨导,导致固有电压增益较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra low energy FDSOI asynchronous reconfiguration network for an IoT wireless sensor network node Challenges and opportunities of vertical FET devices using 3D circuit design layouts Correlations between plasma induced damage and negative bias temperature instability in 65 nm bulk and thin-BOX FDSOI processes Influence of source-drain engineering and temperature on split-capacitance characteristics of FDSOI p-i-n gated diodes Sub-pJ per operation scalable computing: The PULP experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1