Power quality monitoring using neural networks

R.F. Daniels
{"title":"Power quality monitoring using neural networks","authors":"R.F. Daniels","doi":"10.1109/ANN.1991.213479","DOIUrl":null,"url":null,"abstract":"With the proliferation of sensitive control systems and personal computers in the commercial and industrial sector, comes a need for electrical utilities to deliver 'clean' power. Voltage variations in the form of sags, surges and impulses, i.e., disturbances, can chronically plague and permanently damage electrical equipment. Southern California Edison (SCE) in joint effort with Basic Measuring Instruments (BMI) were teamed up to automate the process of collecting disturbance data, viewing their contents and applying artificial intelligence paradigms (neural networks) to help identify their causes and present possible solutions.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

With the proliferation of sensitive control systems and personal computers in the commercial and industrial sector, comes a need for electrical utilities to deliver 'clean' power. Voltage variations in the form of sags, surges and impulses, i.e., disturbances, can chronically plague and permanently damage electrical equipment. Southern California Edison (SCE) in joint effort with Basic Measuring Instruments (BMI) were teamed up to automate the process of collecting disturbance data, viewing their contents and applying artificial intelligence paradigms (neural networks) to help identify their causes and present possible solutions.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的电能质量监测
随着敏感控制系统和个人电脑在商业和工业领域的普及,电力公司需要提供“清洁”电力。电压变化的形式为跌落、浪涌和脉冲,即干扰,可以长期困扰和永久损坏电气设备。南加州爱迪生公司(SCE)与基础测量仪器公司(BMI)共同努力,将收集干扰数据的过程自动化,查看其内容,并应用人工智能范式(神经网络)来帮助确定其原因并提出可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite precision error analysis for neural network learning Hybrid expert system neural network hierarchical architecture for classifying power system contingencies Neural network application to state estimation computation Short term electric load forecasting using an adaptively trained layered perceptron Neural networks for topology determination of power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1