{"title":"Comparative Study And Experimentation of Speed Control Methods of BLDC Motor using DRV8312","authors":"Vinay Kumar Awaar, Rajshri Simhadri, Praveen Jugge","doi":"10.1109/SeFeT55524.2022.9909121","DOIUrl":null,"url":null,"abstract":"Brushless DC Motor parameters are the focus of the paper. This research paper demonstrates that BLDC motors are widely regarded as the best electric motor for all kinds of electric cars. Brushless DC motors are employed because they are more efficient and need less maintenance. The speed range of a BLDC motor is quite broad, but controlling the speed is the challenge. The performance of a BLDC motor under various control methods is investigated. MATLAB/Simulink is used to simulate a BLDC motor and its control drive with an optimal back-Electro Motive Force (EMF) voltage. The direct torque control switching approach of the BLDC motor is presented in this paper. Experimental data has confirmed the correct performance of a BLDC motor driving model. The primary objectives were effective torque controlling, torque ripple minimization, and enhanced performance of the BLDC motor as compared to traditional switching control methods, as well as the four different modes for the characterization of the BLDCM, which are Duty Cycle mode, Current control, Velocity Control, Cascaded mode are studied concurrently.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFeT55524.2022.9909121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Brushless DC Motor parameters are the focus of the paper. This research paper demonstrates that BLDC motors are widely regarded as the best electric motor for all kinds of electric cars. Brushless DC motors are employed because they are more efficient and need less maintenance. The speed range of a BLDC motor is quite broad, but controlling the speed is the challenge. The performance of a BLDC motor under various control methods is investigated. MATLAB/Simulink is used to simulate a BLDC motor and its control drive with an optimal back-Electro Motive Force (EMF) voltage. The direct torque control switching approach of the BLDC motor is presented in this paper. Experimental data has confirmed the correct performance of a BLDC motor driving model. The primary objectives were effective torque controlling, torque ripple minimization, and enhanced performance of the BLDC motor as compared to traditional switching control methods, as well as the four different modes for the characterization of the BLDCM, which are Duty Cycle mode, Current control, Velocity Control, Cascaded mode are studied concurrently.