Particle swarm optimizer for variable weighting in clustering high-dimensional data

Yanping Lv, Shengrui Wang, Shaozi Li, Changle Zhou
{"title":"Particle swarm optimizer for variable weighting in clustering high-dimensional data","authors":"Yanping Lv, Shengrui Wang, Shaozi Li, Changle Zhou","doi":"10.1109/SIS.2009.4937842","DOIUrl":null,"url":null,"abstract":"This paper proposes a particle swarm optimizer to solve the variable weighting problem in subspace clustering of high-dimensional data. Many subspace clustering algorithms fail to yield good cluster quality because they do not employ an efficient search strategy. In this paper, we are interested in soft subspace clustering and design a suitable weighting k-means objective function, on which a change of variable weights is exponentially reflected. We transform the original constrained variable weighting problem into a problem with bound constraints using a potential solution coding method and we develop a particle swarm optimizer to minimize the objective function in order to obtain global optima to the variable weighting problem in clustering. Our experimental results on synthetic datasets show that the proposed algorithm greatly improves cluster quality. In addition, the result of the new algorithm is much less dependent on the initial cluster centroids.","PeriodicalId":326240,"journal":{"name":"IEEE Symposium on Swarm Intelligence","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2009.4937842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper proposes a particle swarm optimizer to solve the variable weighting problem in subspace clustering of high-dimensional data. Many subspace clustering algorithms fail to yield good cluster quality because they do not employ an efficient search strategy. In this paper, we are interested in soft subspace clustering and design a suitable weighting k-means objective function, on which a change of variable weights is exponentially reflected. We transform the original constrained variable weighting problem into a problem with bound constraints using a potential solution coding method and we develop a particle swarm optimizer to minimize the objective function in order to obtain global optima to the variable weighting problem in clustering. Our experimental results on synthetic datasets show that the proposed algorithm greatly improves cluster quality. In addition, the result of the new algorithm is much less dependent on the initial cluster centroids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维数据聚类中变权重的粒子群优化算法
针对高维数据子空间聚类中的变权问题,提出了一种粒子群优化算法。许多子空间聚类算法无法产生良好的聚类质量,因为它们没有采用有效的搜索策略。本文主要研究软子空间聚类问题,设计了一个合适的加权k-means目标函数,在该目标函数上可以指数地反映变量权值的变化。利用潜在解编码的方法将原约束变权问题转化为有界约束问题,并开发了粒子群优化器,使目标函数最小化,从而得到聚类中变权问题的全局最优解。在合成数据集上的实验结果表明,该算法极大地提高了聚类质量。此外,新算法的结果对初始聚类质心的依赖程度大大降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Predictivity Assessment: Incremental Test-Set Selection and Accuracy Evaluation Particle swarm optimizer for variable weighting in clustering high-dimensional data The honey bee foraging behavior syndrome: quantifying the response threshold model of division of labor Bayesian Quantile Estimation in Deconvolution The Rating of Journals and the Research Outcomes in Statistical Sciences in Italian Universities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1